Instituto Nacional de Investigación Agropecuaria (INIA), Programa Nacional de Investigación en Producción de Leche, Estación Experimental INIA La Estanzuela, 39173 Colonia, Uruguay.
INRAE, AgroCampus Ouest, Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Elevage, 35590 Saint Gilles, France.
J Dairy Sci. 2021 Dec;104(12):12647-12663. doi: 10.3168/jds.2021-20507. Epub 2021 Sep 16.
Pasture-based dairy systems present the opportunity to increase productivity per hectare through increasing stocking rate and forage utilization. However, in the temperate hot-summer region of South America, different productive strategies are being adopted by farmers. The aim of this study was to quantify the effect of feeding strategy (FS) and cow genotype (G) on individual animal and whole-farm biophysical performance. A design with 2 × 2 levels of intensification aiming to increase home-grown forage utilization and milk output per hectare was evaluated. The experiment was a randomized complete block design with a 2 × 2 factorial arrangement of treatments, combining 2 feeding strategies with varying proportions of grazing in the annual feeding budget [grass fixed (GFix) and grass maximum (GMax)] and 2 Holstein Friesian cow genotypes [New Zealand (NZHF) or North American Holstein Friesian (NAHF)]. The effects of FS, G, and their interaction were analyzed using mixed models. New Zealand Holstein Friesian cows presented lower individual milk yield and higher milk component concentrations, maintained higher average body condition score, and increased body weight (BW) throughout the experiment, while presenting a better reproductive performance compared with the NAHF cows. Although all farmlets were planned at the same stocking rate on a per kilogram of BW basis, the current stocking rate changed as a result of animal performance and grass utilization resulting in NZHF cows achieving greater BW per hectare. The superior stocking rate led to greater milk solids production and feed consumption per hectare for the systems with NZHF cows. The GFix feeding strategy resulted in greater total home-grown forage harvest and conserved forage surplus than GMax. Overall, it was feasible to increase stocking rate and increase milk production per hectare from home-grown forage with differing feeding strategies and Holstein Friesian cow genotypes within grazing systems located in the temperate hot-summer climate region of South America. The interactions reported between FS × G highlight the superior productivity per hectare of NZHF cows within the GMax feeding strategy based on maximizing grazed pasture, which could represent a competitive intensification strategy in terms of cost of production for this region.
基于草地的奶牛养殖系统通过增加畜群密度和饲料利用率,为提高每公顷的生产力提供了机会。然而,在南美洲温带夏季炎热地区,农民采用了不同的生产策略。本研究的目的是量化饲养策略(FS)和奶牛基因型(G)对个体动物和整个农场生物物理性能的影响。设计了一个 2×2 水平的强化方案,旨在提高本地牧草利用率和每公顷牛奶产量。该实验采用随机完全区组设计,处理采用 2×2 因子排列,结合了两种不同比例的放牧在年度饲养预算中的饲养策略[草地固定(GFix)和草地最大(GMax)]和两种荷斯坦弗里生奶牛基因型[新西兰(NZHF)或北美荷斯坦弗里生(NAHF)]。采用混合模型分析 FS、G 及其相互作用的影响。新西兰荷斯坦弗里生奶牛的个体产奶量较低,牛奶成分浓度较高,平均体况评分较高,体重在整个实验过程中增加,而繁殖性能优于北美荷斯坦弗里生奶牛。尽管所有农场都按照每公斤体重的相同畜群密度进行规划,但由于动物性能和牧草利用率的变化,实际畜群密度发生了变化,导致新西兰荷斯坦弗里生奶牛每公顷的体重增加。较高的畜群密度导致新西兰荷斯坦弗里生奶牛系统每公顷的牛奶固体产量和饲料消耗增加。GFix 饲养策略导致总本地牧草收获量和牧草剩余量比 GMax 饲养策略更大。总的来说,在南美洲温带夏季炎热气候地区的放牧系统中,通过不同的饲养策略和荷斯坦弗里生奶牛基因型,可以增加畜群密度并增加每公顷本地牧草的牛奶产量。FS×G 之间的相互作用表明,基于最大化放牧草地的 GMax 饲养策略下,新西兰荷斯坦弗里生奶牛的每公顷生产力更高,这可能代表了该地区生产成本方面的一种有竞争力的集约化策略。