Suppr超能文献

唾液代谢物是肝细胞癌和慢性肝病有前景的非侵入性生物标志物。

Salivary Metabolites are Promising Non-Invasive Biomarkers of Hepatocellular Carcinoma and Chronic Liver Disease.

作者信息

Hershberger Courtney E, Rodarte Alejandro I, Siddiqi Shirin, Moro Amika, Acevedo-Moreno Lou-Anne, Brown J Mark, Allende Daniela S, Aucejo Federico, Rotroff Daniel M

机构信息

Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, OH, USA.

Department of General Surgery, Cleveland Clinic, OH, USA.

出版信息

Liver Cancer Int. 2021 Aug;2(2):33-44. doi: 10.1002/lci2.25. Epub 2021 May 20.

Abstract

BACKGROUND

Hepatocellular carcinoma (HCC) is a leading causes of cancer mortality worldwide. Improved tools are needed for detecting HCC so that treatment can begin as early as possible. Current diagnostic approaches and existing biomarkers, such as alpha-fetoprotein (AFP) lack sensitivity, resulting in too many false negative diagnoses. Machine-learning may be able to identify combinations of biomarkers that provide more robust predictions and improve sensitivity for detecting HCC. We sought to evaluate whether metabolites in patient saliva could distinguish those with HCC, cirrhosis, and those with no documented liver disease.

METHODS AND RESULTS

We tested 125 salivary metabolites from 110 individuals (43 healthy, 37 HCC, 30 cirrhosis) and identified 4 metabolites that displayed significantly different abundance between groups (FDR <.2). We also developed four tree-based, machine-learning models, optimized to include different numbers of metabolites, that were trained using cross-validation on 99 patients and validated on a withheld test set of 11 patients. A model using 12 metabolites -octadecanol, acetophenone, lauric acid, 1-monopalmitin, dodecanol, salicylaldehyde, glycyl-proline, 1-monostearin, creatinine, glutamine, serine and 4-hydroxybutyric acid- had a cross-validated sensitivity of 84.8%, specificity of 92.4% and correctly classified 90% of the HCC patients in the test cohort. This model outperformed previously reported sensitivities and specificities for AFP (20-100ng/ml) (61%, 86%) and AFP plus ultrasound (62%, 88%).

CONCLUSIONS AND IMPACT

Metabolites detectable in saliva may represent products of disease pathology or a breakdown in liver function. Notably, combinations of salivary metabolites derived from machine-learning may serve as promising non-invasive biomarkers for the detection of HCC.

摘要

背景

肝细胞癌(HCC)是全球癌症死亡的主要原因之一。需要改进检测肝细胞癌的工具,以便尽早开始治疗。当前的诊断方法和现有的生物标志物,如甲胎蛋白(AFP),缺乏敏感性,导致许多假阴性诊断。机器学习或许能够识别出能提供更可靠预测并提高肝细胞癌检测敏感性的生物标志物组合。我们试图评估患者唾液中的代谢物是否能够区分肝细胞癌患者、肝硬化患者以及无肝脏疾病记录的患者。

方法与结果

我们检测了110名个体(43名健康人、37名肝细胞癌患者、30名肝硬化患者)的125种唾液代谢物,并识别出4种在不同组间丰度有显著差异的代谢物(错误发现率<.2)。我们还开发了四种基于树的机器学习模型,针对不同数量的代谢物进行了优化,这些模型通过对99名患者进行交叉验证训练,并在11名患者的保留测试集上进行验证。一个使用12种代谢物——十八烷醇、苯乙酮、月桂酸、单棕榈酸甘油酯、十二烷醇、水杨醛、甘氨酰脯氨酸、单硬脂酸甘油酯、肌酐、谷氨酰胺、丝氨酸和4-羟基丁酸——的模型,交叉验证敏感性为84.8%,特异性为92.4%,并在测试队列中正确分类了90%的肝细胞癌患者。该模型的表现优于先前报道的甲胎蛋白(20 - 100ng/ml)的敏感性和特异性(61%,86%)以及甲胎蛋白联合超声检查的敏感性和特异性(62%,88%)。

结论与影响

唾液中可检测到的代谢物可能代表疾病病理产物或肝功能障碍。值得注意的是,通过机器学习得出的唾液代谢物组合可能成为检测肝细胞癌有前景的非侵入性生物标志物。

相似文献

引用本文的文献

本文引用的文献

8
Cancer statistics, 2020.癌症统计数据,2020 年。
CA Cancer J Clin. 2020 Jan;70(1):7-30. doi: 10.3322/caac.21590. Epub 2020 Jan 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验