Department of Chemistry, Seoul National University, Seoul 08826, Korea.
Korea Basic Science Institute, Cheongju, Chungcheongbuk-do 28119, Korea.
J Phys Chem Lett. 2021 Sep 30;12(38):9315-9320. doi: 10.1021/acs.jpclett.1c02605. Epub 2021 Sep 20.
Intrinsically disordered proteins (IDPs) play an important role in cell signaling, and NMR is well-suited to study conformational ensembles and dynamics of IDPs. However, the intrinsic flexibility of IDPs often results in severe spectral overlap, which hampers accurate NMR data analysis. By labeling the longitudinal spin order of an α proton (i.e., H) on multiple quantum coherences of backbone nuclei (e.g., NC'C), we were able to apply pre-homonuclear decoupling (PHD) to transverse relaxation-optimized spectroscopy (TROSY). The proposed scheme provides ultrahigh resolution in both amide proton and nitrogen dimensions, as illustrated in the analysis of Tau and alpha-synuclein (α-Syn) proteins. The PHD-TROSY readout enabled complete backbone resonance assignment of α-Syn using a single 3D HNCA experiment performed on a 600 MHz NMR spectrometer.
无规卷曲蛋白质(IDPs)在细胞信号转导中发挥着重要作用,而 NMR 非常适合研究 IDPs 的构象集合和动力学。然而,IDPs 的固有灵活性通常会导致严重的光谱重叠,从而阻碍准确的 NMR 数据分析。通过标记多个量子相干的 backbone 核(例如,NC'C)上的 α 质子(即 H)的纵向自旋顺序,我们能够将预同核去耦(PHD)应用于横向弛豫优化光谱(TROSY)。所提出的方案在酰胺质子和氮维度都提供了超高分辨率,如图 Tau 和 alpha-synuclein(α-Syn)蛋白质的分析所示。PHD-TROSY 读出使使用在 600 MHz NMR 光谱仪上执行的单个 3D HNCA 实验即可完成完整的α-Syn 残基共振分配。