Suppr超能文献

贝叶斯预测精英游泳比赛的获胜时间。

Bayesian prediction of winning times for elite swimming events.

机构信息

School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.

ACEMS Centre of Excellence in Mathematical and Statistical Frontiers (Acems), Melbourne, VIC, Australia.

出版信息

J Sports Sci. 2022 Jan;40(1):24-31. doi: 10.1080/02640414.2021.1976485. Epub 2021 Sep 20.

Abstract

To develop a statistical model of winning times for international swimming events with the aim of predicting winning time distributions and the probability of winning for the 2020 and 2024 Olympic Games. The data set included first and third place times from all individual swimming events from the Olympics and World Championships from 1990 to 2019. We compared different model formulations fitted with Bayesian inference to obtain predictive distributions; comparisons were based on mean percentage error in out-of-sample predictions of Olympics and World Championships winning swim times from 2011 to 2019. The Bayesian time series regression model, comprising auto-regressive and moving average terms and other predictors, had the smallest mean prediction error of 0.57% (CI 0.46-0.74%). For context, using the respective previous Olympics or World Championships winning time resulted in a mean prediction error of 0.70% (CI 0.59-0.82%). The Olympics were on average 0.5% (CI 0.3-0.7%) faster than World Championships over the study period. The model computes the posterior predictive distribution, which allows coaches and athletes to evaluate the probability of winning given an individual's swim time, and the probability of being faster or slower than the previous winning time or even the world record.

摘要

为了开发一个国际游泳比赛获胜时间的统计模型,旨在预测 2020 年和 2024 年奥运会的获胜时间分布和获胜概率。数据集包括 1990 年至 2019 年奥运会和世界锦标赛所有个人游泳项目的第一名和第三名的时间。我们比较了不同的模型公式,这些公式都采用贝叶斯推断进行拟合,以获得预测分布;比较的基础是 2011 年至 2019 年奥运会和世界锦标赛游泳获胜时间的样本外预测的平均百分比误差。包含自回归和移动平均项及其他预测因子的贝叶斯时间序列回归模型的平均预测误差最小,为 0.57%(置信区间 0.46-0.74%)。相比之下,使用之前的奥运会或世界锦标赛的获胜时间会导致平均预测误差为 0.70%(置信区间 0.59-0.82%)。在研究期间,奥运会的平均速度比世界锦标赛快 0.5%(置信区间 0.3-0.7%)。该模型计算了后验预测分布,这使得教练和运动员可以根据个人的游泳时间评估获胜的概率,以及比之前的获胜时间甚至世界纪录更快或更慢的概率。

相似文献

1
Bayesian prediction of winning times for elite swimming events.贝叶斯预测精英游泳比赛的获胜时间。
J Sports Sci. 2022 Jan;40(1):24-31. doi: 10.1080/02640414.2021.1976485. Epub 2021 Sep 20.
3
Career factors related to winning Olympic medals in swimming.与游泳奥运奖牌相关的职业因素。
PLoS One. 2024 Jun 28;19(6):e0304444. doi: 10.1371/journal.pone.0304444. eCollection 2024.
5
Tracking career performance of successful triathletes.追踪成功铁人三项运动员的职业表现。
Med Sci Sports Exerc. 2014 Jun;46(6):1227-34. doi: 10.1249/MSS.0000000000000221.
8
Cutoff value for predicting success in triathlon mixed team relay.预测铁人三项混合团体接力赛成功的临界值。
Front Sports Act Living. 2023 Apr 17;5:1096272. doi: 10.3389/fspor.2023.1096272. eCollection 2023.
9
Breaking the Myth That Relay Swimming Is Faster Than Individual Swimming.打破接力游泳比个人游泳速度更快的神话。
Int J Sports Physiol Perform. 2016 Apr;11(3):410-3. doi: 10.1123/ijspp.2014-0577. Epub 2015 Aug 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验