Suppr超能文献

ncDLRES:一种基于动态 LSTM 和 ResNet 的新型非编码 RNA 家族预测方法。

ncDLRES: a novel method for non-coding RNAs family prediction based on dynamic LSTM and ResNet.

机构信息

College of Computer Science and Technology, Jilin University, Changchun, China.

出版信息

BMC Bioinformatics. 2021 Sep 20;22(1):447. doi: 10.1186/s12859-021-04365-4.

Abstract

BACKGROUND

Studies have proven that the same family of non-coding RNAs (ncRNAs) have similar functions, so predicting the ncRNAs family is helpful to the research of ncRNAs functions. The existing calculation methods mainly fall into two categories: the first type is to predict ncRNAs family by learning the features of sequence or secondary structure, and the other type is to predict ncRNAs family by the alignment among homologs sequences. In the first type, some methods predict ncRNAs family by learning predicted secondary structure features. The inaccuracy of predicted secondary structure may cause the low accuracy of those methods. Different from that, ncRFP directly learning the features of ncRNA sequences to predict ncRNAs family. Although ncRFP simplifies the prediction process and improves the performance, there is room for improvement in ncRFP performance due to the incomplete features of its input data. In the secondary type, the homologous sequence alignment method can achieve the highest performance at present. However, due to the need for consensus secondary structure annotation of ncRNA sequences, and the helplessness for modeling pseudoknots, the use of the method is limited.

RESULTS

In this paper, a novel method "ncDLRES", which according to learning the sequence features, is proposed to predict the family of ncRNAs based on Dynamic LSTM (Long Short-term Memory) and ResNet (Residual Neural Network).

CONCLUSIONS

ncDLRES extracts the features of ncRNA sequences based on Dynamic LSTM and then classifies them by ResNet. Compared with the homologous sequence alignment method, ncDLRES reduces the data requirement and expands the application scope. By comparing with the first type of methods, the performance of ncDLRES is greatly improved.

摘要

背景

研究证明,同一类非编码 RNA(ncRNA)具有相似的功能,因此预测 ncRNA 家族有助于研究 ncRNA 的功能。现有的计算方法主要分为两类:第一类是通过学习序列或二级结构的特征来预测 ncRNA 家族,另一类是通过同源序列的比对来预测 ncRNA 家族。在第一类中,一些方法通过学习预测的二级结构特征来预测 ncRNA 家族。预测的二级结构的不准确性可能导致这些方法的准确性较低。与这一点不同,ncRFP 直接学习 ncRNA 序列的特征来预测 ncRNA 家族。虽然 ncRFP 简化了预测过程并提高了性能,但由于其输入数据的特征不完整,ncRFP 的性能仍有改进的空间。在第二类中,同源序列比对方法目前可以达到最高的性能。然而,由于需要 ncRNA 序列的共识二级结构注释,以及对建模假结的无奈,该方法的使用受到限制。

结果

本文提出了一种新的方法“ncDLRES”,它根据学习序列特征,基于动态 LSTM(长短期记忆)和 ResNet(残差神经网络)来预测 ncRNA 家族。

结论

ncDLRES 基于动态 LSTM 提取 ncRNA 序列的特征,然后通过 ResNet 对其进行分类。与同源序列比对方法相比,ncDLRES 减少了数据需求并扩大了应用范围。与第一类方法相比,ncDLRES 的性能有了很大的提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c92/8451086/163c816d81d5/12859_2021_4365_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验