Suppr超能文献

基于序列特征的膜蛋白鉴定。

Identification of Membrane Proteins Using Sequence-Based Features.

机构信息

Ineye Hospital of Chengdu University of TCM, Chengdu University of TCM, Chengdu 610084, China.

School of Healthcare Technology, Chengdu Neusoft University, 611844 Chengdu, China.

出版信息

Comput Math Methods Med. 2022 Jan 12;2022:7493834. doi: 10.1155/2022/7493834. eCollection 2022.

Abstract

() is the most common risk factor for gastric cancer worldwide. The membrane proteins of the are involved in bacterial adherence and play a vital role in the field of drug discovery. Thus, an accurate and cost-effective computational model is needed to predict the uncharacterized membrane proteins of . In this study, a reliable benchmark dataset consisted of 114 membrane and 219 nonmembrane proteins was constructed based on UniProt. A support vector machine- (SVM-) based model was developed for discriminating membrane proteins from nonmembrane proteins by using sequence information. Cross-validation showed that our method achieved good performance with an accuracy of 91.29%. It is anticipated that the proposed model will be useful for the annotation of membrane proteins and the development of new anti- agents.

摘要

幽门螺杆菌是全球范围内胃癌最常见的危险因素。该菌的膜蛋白参与细菌黏附,在药物发现领域发挥着重要作用。因此,需要建立一个准确且经济有效的计算模型,以预测未鉴定的幽门螺杆菌膜蛋白。本研究基于 UniProt 构建了一个由 114 个膜蛋白和 219 个非膜蛋白组成的可靠基准数据集。利用序列信息,我们开发了一种基于支持向量机(SVM)的模型,用于区分膜蛋白和非膜蛋白。交叉验证表明,我们的方法具有良好的性能,准确率为 91.29%。预计该模型将有助于幽门螺杆菌膜蛋白的注释和新型抗菌药物的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ce6/8769816/0ef3fe0510cf/CMMM2022-7493834.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验