Suppr超能文献

通过第五型 CRISPR-Cas 基因组编辑工程 T4 噬菌体展示。

Engineering T4 Bacteriophage for Display by Type V CRISPR-Cas Genome Editing.

机构信息

Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.

The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.

出版信息

ACS Synth Biol. 2021 Oct 15;10(10):2639-2648. doi: 10.1021/acssynbio.1c00251. Epub 2021 Sep 21.

Abstract

Bacteriophage T4 has enormous potential for biomedical applications due to its large size, capsid architecture, and high payload capability for protein and DNA delivery. However, it is not very easy to genetically engineer its genome heavily modified by cytosine hydroxymethylation and glucosylation. The glucosyl hydroxymethyl cytosine (ghmC) genome of phage is completely resistant to most restriction endonucleases and exhibits various degrees of resistance to CRISPR-Cas systems. Here, we found that the type V CRISPR-Cas12a system, which shows efficient cleavage of ghmC-modified genome when compared to the type II CRISPR-Cas9 system, can be synergistically employed to generate recombinant T4 phages. Focused on surface display, we analyzed the ability of phage T4 outer capsid proteins Hoc (highly antigenic outer capsid protein) and Soc (small outer capsid protein) to tether, , foreign peptides and proteins to T4 capsid. Our data show that while these could be successfully expressed and displayed during the phage infection, shorter peptides are present at a much higher copy number than full-length proteins. However, the copy number of the latter could be elevated by driving the expression of the transgene using the strong T7 RNA polymerase expression system. This CRISPR-inspired approach has the potential to expand the application of phages to various basic and translational research projects.

摘要

噬菌体 T4 由于其体积大、衣壳结构和高载蛋白和 DNA 输送能力,具有巨大的生物医药应用潜力。然而,要对其基因组进行大量的基因工程改造,使其受到胞嘧啶羟甲基化和葡糖基化的修饰,并不是一件容易的事。噬菌体的葡糖基羟甲基胞嘧啶(ghmC)基因组完全抵抗大多数限制内切酶,并表现出对 CRISPR-Cas 系统的不同程度的抗性。在这里,我们发现与 II 型 CRISPR-Cas9 系统相比,V 型 CRISPR-Cas12a 系统能够有效地切割 ghmC 修饰的基因组,可协同用于生成重组 T4 噬菌体。我们专注于表面展示,分析了噬菌体 T4 外壳蛋白 Hoc(高度抗原性外壳蛋白)和 Soc(小外壳蛋白)将外源肽和蛋白质连接到 T4 衣壳的能力。我们的数据表明,虽然这些在噬菌体感染期间可以成功表达和展示,但短肽的拷贝数要比全长蛋白高得多。然而,通过使用强 T7 RNA 聚合酶表达系统驱动转基因的表达,可以提高后者的拷贝数。这种受 CRISPR 启发的方法有可能将噬菌体的应用扩展到各种基础和转化研究项目。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验