Department of Food Science and Technology, Cornell University, Ithaca, NY, 14853, USA.
College of Life Sciences, Sichuan Normal University, Chengdu, China.
Sci Rep. 2020 Oct 26;10(1):18229. doi: 10.1038/s41598-020-75426-6.
A major limitation hindering the widespread use of synthetic phages in medical and industrial settings is the lack of an efficient phage-engineering platform. Classical T4 phage engineering and several newly proposed methods are often inefficient and time consuming and consequently, only able to produce an inconsistent range of genomic editing rates between 0.03-3%. Here, we review and present new understandings of the CRISPR/Cas9 assisted genome engineering technique that significantly improves the genomic editing rate of T4 phages. Our results indicate that crRNAs selection is a major rate limiting factor in T4 phage engineering via CRISPR/Cas9. We were able to achieve an editing rate of > 99% for multiple genes that functionalizes the phages for further applications. We envision that this improved phage-engineering platform will accelerate the fields of individualized phage therapy, biocontrol, and rapid diagnostics.
主要限制阻碍了合成噬菌体在医学和工业环境中的广泛应用是缺乏一个有效的噬菌体工程平台。经典 T4 噬菌体工程和几个新提出的方法往往效率低下,费时,因此,只能产生不一致的基因组编辑率在 0.03-3%之间。在这里,我们回顾和介绍了 CRISPR/Cas9 辅助基因组工程技术的新认识,该技术显著提高了 T4 噬菌体的基因组编辑率。我们的结果表明,crRNA 的选择是通过 CRISPR/Cas9 进行 T4 噬菌体工程的主要限速因素。我们能够实现多个基因的编辑率>99%,使噬菌体具有进一步应用的功能。我们设想这个改进的噬菌体工程平台将加速个体化噬菌体治疗、生物防治和快速诊断的发展。