Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, Texas 78723, United States.
Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
J Am Chem Soc. 2021 Oct 6;143(39):16030-16040. doi: 10.1021/jacs.1c06192. Epub 2021 Sep 21.
Protein O-GlcNAcylation is an essential and dynamic regulator of myriad cellular processes, including DNA replication and repair. Proteomic studies have identified the multifunctional nuclear protein HMGB1 as O-GlcNAcylated, providing a potential link between this modification and DNA damage responses. Here, we verify the protein's endogenous modification at S100 and S107 and found that the major modification site is S100, a residue that can potentially influence HMGB1-DNA interactions. Using synthetic protein chemistry, we generated site-specifically O-GlcNAc-modified HMGB1 at S100 and characterized biochemically the effect of the sugar modification on its DNA binding activity. We found that O-GlcNAc alters HMGB1 binding to linear, nucleosomal, supercoiled, cruciform, and interstrand cross-linked damaged DNA, generally resulting in enhanced oligomerization on these DNA structures. Using cell-free extracts, we also found that O-GlcNAc reduces the ability of HMGB1 to facilitate DNA repair, resulting in error-prone processing of damaged DNA. Our results expand our understanding of the molecular consequences of O-GlcNAc and how it affects protein-DNA interfaces. Importantly, our work may also support a link between upregulated O-GlcNAc levels and increased rates of mutations in certain cancer states.
蛋白质 O-GlcNAc 修饰是多种细胞过程的必要和动态调节剂,包括 DNA 复制和修复。蛋白质组学研究已经鉴定出多功能核蛋白 HMGB1 是 O-GlcNAc 化的,为这种修饰与 DNA 损伤反应之间的潜在联系提供了依据。在这里,我们验证了该蛋白质在 S100 和 S107 处的内源性修饰,并发现主要修饰位点是 S100,该残基可能会影响 HMGB1-DNA 相互作用。我们使用合成蛋白质化学技术,在 S100 处生成了 HMGB1 的特异性 O-GlcNAc 修饰,并从生化角度表征了糖修饰对其 DNA 结合活性的影响。我们发现 O-GlcNAc 改变了 HMGB1 与线性、核小体、超螺旋、十字形和链间交联的损伤 DNA 的结合,通常导致这些 DNA 结构上的寡聚化增强。使用无细胞提取物,我们还发现 O-GlcNAc 降低了 HMGB1 促进 DNA 修复的能力,导致损伤 DNA 的易错处理。我们的结果扩展了我们对 O-GlcNAc 的分子后果的理解,以及它如何影响蛋白质-DNA 界面。重要的是,我们的工作也可能支持在某些癌症状态下上调的 O-GlcNAc 水平与突变率增加之间的联系。