Suppr超能文献

破解 V(D)J 重组的 DNA 密码。

Cracking the DNA Code for V(D)J Recombination.

机构信息

Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA; Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea.

Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA.

出版信息

Mol Cell. 2018 Apr 19;70(2):358-370.e4. doi: 10.1016/j.molcel.2018.03.008. Epub 2018 Apr 5.

Abstract

To initiate V(D)J recombination for generating the adaptive immune response of vertebrates, RAG1/2 recombinase cleaves DNA at a pair of recombination signal sequences, the 12- and 23-RSS. We have determined crystal and cryo-EM structures of RAG1/2 with DNA in the pre-reaction and hairpin-forming complexes up to 2.75 Å resolution. Both protein and DNA exhibit structural plasticity and undergo dramatic conformational changes. Coding-flank DNAs extensively rotate, shift, and deform for nicking and hairpin formation. Two intertwined RAG1 subunits crisscross four times between the asymmetric pair of severely bent 12/23-RSS DNAs. Location-sensitive bending of 60° and 150° in 12- and 23-RSS spacers, respectively, must occur for RAG1/2 to capture the nonamers and pair the heptamers for symmetric double-strand breakage. DNA pairing is thus sequence-context dependent and structure specific, which partly explains the "beyond 12/23" restriction. Finally, catalysis in crystallo reveals the process of DNA hairpin formation and its stabilization by interleaved base stacking.

摘要

为了启动脊椎动物适应性免疫反应的 V(D)J 重组,RAG1/2 重组酶在一对重组信号序列(12-RSS 和 23-RSS)处切割 DNA。我们已经确定了 RAG1/2 与 DNA 在预反应和发夹形成复合物中的晶体和 cryo-EM 结构,分辨率高达 2.75 Å。蛋白质和 DNA 都表现出结构的可变性,并发生剧烈的构象变化。编码侧翼 DNA 广泛旋转、移动和变形,以进行缺口和发夹形成。两个交织的 RAG1 亚基在不对称的严重弯曲的 12/23-RSS DNA 之间交叉四次。12-RSS 和 23-RSS 间隔区中的 60°和 150°的位置敏感弯曲必须发生,以便 RAG1/2 捕获非九聚体并配对七聚体以进行对称双链断裂。因此,DNA 配对是序列上下文依赖性和结构特异性的,这部分解释了“超越 12/23”的限制。最后,结晶中的催化揭示了 DNA 发夹形成及其通过交错碱基堆积稳定的过程。

相似文献

1
Cracking the DNA Code for V(D)J Recombination.破解 V(D)J 重组的 DNA 密码。
Mol Cell. 2018 Apr 19;70(2):358-370.e4. doi: 10.1016/j.molcel.2018.03.008. Epub 2018 Apr 5.
2
Real-time analysis of RAG complex activity in V(D)J recombination.V(D)J重组中RAG复合体活性的实时分析。
Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):11853-11858. doi: 10.1073/pnas.1606721113. Epub 2016 Oct 4.
8
Structural gymnastics of RAG-mediated DNA cleavage in V(D)J recombination.RAG 介导的 V(D)J 重组中 DNA 切割的结构体操。
Curr Opin Struct Biol. 2018 Dec;53:178-186. doi: 10.1016/j.sbi.2018.11.001. Epub 2018 Nov 23.

引用本文的文献

2
TOX, through a glass, darkly.透过玻璃,隐约地看到“毒素”。
Front Immunol. 2025 Jul 17;16:1576468. doi: 10.3389/fimmu.2025.1576468. eCollection 2025.
9
Molecular basis for differential Igk versus Igh V(D)J joining mechanisms.Igk 与 Igh V(D)J 连接机制差异的分子基础。
Nature. 2024 Jun;630(8015):189-197. doi: 10.1038/s41586-024-07477-y. Epub 2024 May 29.

本文引用的文献

1
Structural Basis of Mitochondrial Transcription Initiation.线粒体转录起始的结构基础
Cell. 2017 Nov 16;171(5):1072-1081.e10. doi: 10.1016/j.cell.2017.10.036.
3
A pipeline approach to single-particle processing in RELION.在 RELION 中采用流水线方法进行单颗粒处理。
Acta Crystallogr D Struct Biol. 2017 Jun 1;73(Pt 6):496-502. doi: 10.1107/S2059798316019276. Epub 2017 Apr 20.
7
Single-Particle Refinement and Variability Analysis in EMAN2.1.EMAN2.1中的单颗粒精修与变异性分析
Methods Enzymol. 2016;579:159-89. doi: 10.1016/bs.mie.2016.05.001. Epub 2016 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验