College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan, China.
Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing, China.
PLoS One. 2021 Sep 21;16(9):e0257230. doi: 10.1371/journal.pone.0257230. eCollection 2021.
Named entity recognition (NER) is one fundamental task in the natural language processing (NLP) community. Supervised neural network models based on contextualized word representations can achieve highly-competitive performance, which requires a large-scale manually-annotated corpus for training. While for the resource-scarce languages, the construction of such as corpus is always expensive and time-consuming. Thus, unsupervised cross-lingual transfer is one good solution to address the problem. In this work, we investigate the unsupervised cross-lingual NER with model transfer based on contextualized word representations, which greatly advances the cross-lingual NER performance. We study several model transfer settings of the unsupervised cross-lingual NER, including (1) different types of the pretrained transformer-based language models as input, (2) the exploration strategies of the multilingual contextualized word representations, and (3) multi-source adaption. In particular, we propose an adapter-based word representation method combining with parameter generation network (PGN) better to capture the relationship between the source and target languages. We conduct experiments on a benchmark ConLL dataset involving four languages to simulate the cross-lingual setting. Results show that we can obtain highly-competitive performance by cross-lingual model transfer. In particular, our proposed adapter-based PGN model can lead to significant improvements for cross-lingual NER.
命名实体识别(NER)是自然语言处理(NLP)领域的一项基本任务。基于上下文词表示的监督神经网络模型可以实现非常有竞争力的性能,这需要大规模的人工标注语料库进行训练。然而,对于资源匮乏的语言来说,构建这样的语料库总是昂贵且耗时的。因此,无监督跨语言迁移是解决这一问题的一个很好的解决方案。在这项工作中,我们研究了基于上下文词表示的模型迁移的无监督跨语言 NER,这大大提高了跨语言 NER 的性能。我们研究了无监督跨语言 NER 的几种模型迁移设置,包括(1)作为输入的不同类型的预训练基于转换器的语言模型,(2)多语言上下文词表示的探索策略,以及(3)多源适配。特别是,我们提出了一种基于适配器的词表示方法,结合参数生成网络(PGN)更好地捕捉源语言和目标语言之间的关系。我们在涉及四种语言的基准 ConLL 数据集上进行了实验,以模拟跨语言设置。结果表明,我们可以通过跨语言模型迁移获得非常有竞争力的性能。特别是,我们提出的基于适配器的 PGN 模型可以显著提高跨语言 NER 的性能。