Suppr超能文献

跨语言仇恨言论检测使用领域特定的词嵌入。

Cross-lingual hate speech detection using domain-specific word embeddings.

机构信息

Computer Science Department, Universidad de Chile, Santiago de Chile, Chile.

Cero.ai, Santiago de Chile, Chile.

出版信息

PLoS One. 2024 Jul 30;19(7):e0306521. doi: 10.1371/journal.pone.0306521. eCollection 2024.

Abstract

THIS ARTICLE USES WORDS OR LANGUAGE THAT IS CONSIDERED PROFANE, VULGAR, OR OFFENSIVE BY SOME READERS. Hate speech detection in online social networks is a multidimensional problem, dependent on language and cultural factors. Most supervised learning resources for this task, such as labeled datasets and Natural Language Processing (NLP) tools, have been specifically tailored for English. However, a large portion of web users around the world speak different languages, creating an important need for efficient multilingual hate speech detection approaches. In particular, such approaches should be able to leverage the limited cross-lingual resources currently existing in their learning process. The cross-lingual transfer in this task has been difficult to achieve successfully. Therefore, we propose a simple yet effective method to approach this problem. To our knowledge, ours is the first attempt to create a multilingual embedding model specific to this problem. We validate the effectiveness of our approach by performing an extensive comparative evaluation against several well-known general-purpose language models that, unlike ours, have been trained on massive amounts of data. We focus on a zero-shot cross-lingual evaluation scenario in which we classify hate speech in one language without having access to any labeled data. Despite its simplicity, our embeddings outperform more complex models for most experimental settings we tested. In addition, we provide further evidence of the effectiveness of our approach through an ad hoc qualitative exploratory analysis, which captures how hate speech is displayed in different languages. This analysis allows us to find new cross-lingual relations between words in the hate-speech domain. Overall, our findings indicate common patterns in how hate speech is expressed across languages and that our proposed model can capture such relationships significantly.

摘要

本文使用的词语或语言被一些读者认为是亵渎的、粗俗的或冒犯性的。在线社交网络中的仇恨言论检测是一个多维度的问题,取决于语言和文化因素。这项任务的大多数监督学习资源,如标记数据集和自然语言处理(NLP)工具,都是专门为英语定制的。然而,世界上很大一部分网络用户说不同的语言,这就产生了对高效多语言仇恨言论检测方法的重要需求。特别是,这些方法应该能够在学习过程中利用现有的有限跨语言资源。在这项任务中,跨语言转移一直难以成功实现。因此,我们提出了一种简单而有效的方法来解决这个问题。据我们所知,这是首次尝试创建专门针对此问题的多语言嵌入模型。我们通过对几个知名的通用语言模型进行广泛的比较评估来验证我们方法的有效性,这些模型与我们的模型不同,它们是在大量数据上进行训练的。我们专注于零样本跨语言评估场景,即在没有访问任何标记数据的情况下对一种语言中的仇恨言论进行分类。尽管我们的方法很简单,但在我们测试的大多数实验设置中,它都优于更复杂的模型。此外,我们通过专门的定性探索性分析进一步证明了我们方法的有效性,该分析捕捉了仇恨言论在不同语言中的表现方式。这种分析使我们能够发现仇恨言论领域中单词之间的新的跨语言关系。总的来说,我们的研究结果表明,仇恨言论在不同语言中的表达方式存在共同模式,并且我们提出的模型可以显著捕捉到这些关系。

相似文献

1
Cross-lingual hate speech detection using domain-specific word embeddings.跨语言仇恨言论检测使用领域特定的词嵌入。
PLoS One. 2024 Jul 30;19(7):e0306521. doi: 10.1371/journal.pone.0306521. eCollection 2024.
3
A survey on multi-lingual offensive language detection.一项关于多语言冒犯性语言检测的调查。
PeerJ Comput Sci. 2024 Mar 29;10:e1934. doi: 10.7717/peerj-cs.1934. eCollection 2024.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验