Suppr超能文献

比较机器学习算法在远程和原位估算叶绿素-a 含量方面的性能:以越南三安水库为例。

Comparing the performance of machine learning algorithms for remote and in situ estimations of chlorophyll-a content: A case study in the Tri An Reservoir, Vietnam.

机构信息

Graduate School of Systems and Information Engineering, University of Tsukuba, Tsukuba, Japan.

Faculty of Fisheries, University of Agriculture and Forestry, Hue University, Hue, Vietnam.

出版信息

Water Environ Res. 2021 Dec;93(12):2941-2957. doi: 10.1002/wer.1643. Epub 2021 Oct 4.

Abstract

Chlorophyll-a (Chl-a) is one of the most important indicators of the trophic status of inland waters, and its continued monitoring is essential. Recently, the operated Sentinel-2 MSI satellite offers high spatial resolution images for remote water quality monitoring. In this study, we tested the performance of the three well-known machine learning (ML) (random forest [RF], support vector machine [SVM], and Gaussian process [GP]) and the two novel ML (extreme gradient boost (XGB) and CatBoost [CB]) models for estimation a wide range of Chl-a concentration (10.1-798.7 μg/L) using the Sentinel-2 MSI data and in situ water quality measurement in the Tri An Reservoir (TAR), Vietnam. GP indicated the most reliable model for predicting Chl-a from water quality parameters (R  = 0.85, root-mean-square error [RMSE] = 56.65 μg/L, Akaike's information criterion [AIC] = 575.10, and Bayesian information criterion [BIC] = 595.24). Regarding input model as water surface reflectance, CB was the superior model for Chl-a retrieval (R  = 0.84, RMSE = 46.28 μg/L, AIC = 229.18, and BIC = 238.50). Our results indicated that GP and CB are the two best models for the prediction of Chl-a in TAR. Overall, the Sentinel-2 MSI coupled with ML algorithms is a reliable, inexpensive, and accurate instrument for monitoring Chl-a in inland waters. PRACTITIONER POINTS: Machine learning algorithms were used for both remote sensing data and in situ water quality measurements. The performance of five well-known machine learning models was tested Gaussian process was the most reliable model for predicting Chl-a from water quality parameters CatBoost was the best model for Chl-a retrieval from water surface reflectance.

摘要

叶绿素 a(Chl-a)是内陆水域营养状况的重要指标之一,因此持续监测十分必要。最近,运行中的 Sentinel-2 MSI 卫星为远程水质监测提供了高空间分辨率图像。在本研究中,我们测试了三种著名的机器学习(ML)(随机森林[RF]、支持向量机[SVM]和高斯过程[GP])和两种新的 ML(极端梯度提升[XGB]和 CatBoost[CB])模型的性能,用于估算越南三安水库(TAR)内大范围的 Chl-a 浓度(10.1-798.7μg/L),这些模型使用了 Sentinel-2 MSI 数据和原位水质测量值。GP 表示最可靠的模型,可用于根据水质参数预测 Chl-a(R=0.85,均方根误差[RMSE]=56.65μg/L,Akaike 信息准则[AIC]=575.10,贝叶斯信息准则[BIC]=595.24)。关于将输入模型作为水面反射率,CB 是 Chl-a 检索的优势模型(R=0.84,RMSE=46.28μg/L,AIC=229.18,BIC=238.50)。我们的结果表明,GP 和 CB 是 TAR 中预测 Chl-a 的两个最佳模型。总体而言,Sentinel-2 MSI 与 ML 算法相结合,是监测内陆水域 Chl-a 的可靠、廉价且准确的仪器。从业者要点:机器学习算法既用于遥感数据,也用于原位水质测量。测试了五种著名机器学习模型的性能,发现:高斯过程是最可靠的模型,可根据水质参数预测 Chl-aCatBoost 是从水面反射率中检索 Chl-a 的最佳模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验