Suppr超能文献

利用 Sentinel-2 MSI 图像和机器学习算法定量分析中国典型湖泊中的叶绿素-a。

Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm.

机构信息

Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China.

Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China.

出版信息

Sci Total Environ. 2021 Jul 15;778:146271. doi: 10.1016/j.scitotenv.2021.146271. Epub 2021 Mar 8.

Abstract

Lake eutrophication has attracted the attention of the government and general public. Chlorophyll-a (Chl-a) is a key indicator of algal biomass and eutrophication. Many efforts have been devoted to establishing accurate algorithms for estimating Chl-a concentrations. In this study, a total of 273 samples were collected from 45 typical lakes across China during 2017-2019. Here, we proposed applicable machine learning algorithms (i.e., linear regression model (LR), support vector machine model (SVM) and Catboost model (CB)), which integrate a broad scale dataset of lake biogeochemical characteristics using Multispectral Imager (MSI) product to seamlessly retrieve the Chl-a concentration. A K-means clustering approach was used to cluster the 273 normalized water leaving reflectance spectra [Rrs (λ)] extracted from MSI imagery with Case 2 Regional Coast Colour (CR2CC) processor into three groups. The pH, electrical conductivity (EC), total suspended matter (TSM) and dissolved organic carbon (DOC) from three clustering groups had significant differences (p < 0.05**), indicating that water quality parameters have an integrated impact on Rrs(λ)-spectra. The results of machine learning algorithms integrating demonstrated that SVM obtained a better degree of measured- and derived- fitting (calibration: slope = 0.81, R = 0.91; validation: slope = 1.21, R = 0.88). On the contrary, the documented nine Chl-a algorithms gave poor results (fitting 1:1 linear slope < 0.4 and R < 0.70) with synchronous train and test datasets. It demonstrated that machine learning provides a robust model for quantifying Chl-a concentration. Further, considering three Rrs(λ) clustering groups by k-means, Chl-a SVM model indicated that cluster 1 group gave a better retrieving performance (slope = 0.71, R = 0.78), followed by cluster 3 group (slope = 0.77, R = 0.64) and cluster 2 group (slope = 0.67, R = 0.50). These are related to the low TSM and high DOC levels for cluster-1 and cluster-3 Rrs(λ) spectra, which reduce the influence of particle in red bands for Rrs(λ) signal. Our results highlighted the quantification of lake Chl-a concentrations using MSI imagery and SVM, which can realize the large-scale monitoring and more appropriate for medium/low Chl-a level. The remote estimation of Chl-a based on artificial intelligence can provide an effective and robust way to monitor the lake eutrophication on a macro-scale; and offer a better approach to elucidate the response of lake ecosystems to global change.

摘要

湖泊富营养化引起了政府和公众的关注。叶绿素 a(Chl-a)是藻类生物量和富营养化的关键指标。已经做出了许多努力来建立准确的算法来估计 Chl-a 浓度。本研究共采集了 2017-2019 年期间中国 45 个典型湖泊的 273 个样本。在这里,我们提出了适用的机器学习算法(即线性回归模型(LR)、支持向量机模型(SVM)和 Catboost 模型(CB)),该算法利用多光谱成像仪(MSI)产品综合了广泛的湖泊生物地球化学特征数据集,无缝地反演了 Chl-a 浓度。使用 K-均值聚类方法将从 MSI 图像中提取的 273 个归一化水离反射率光谱 [Rrs(λ)] 与案例 2 区域海岸色(CR2CC)处理器聚类为三组。聚类组 3 的 pH 值、电导率(EC)、总悬浮物质(TSM)和溶解有机碳(DOC)有显著差异(p<0.05**),表明水质参数对 Rrs(λ)-光谱有综合影响。结合机器学习算法的结果表明,SVM 获得了更好的测量和推导拟合程度(校准:斜率=0.81,R=0.91;验证:斜率=1.21,R=0.88)。相反,记录的九个 Chl-a 算法的结果较差(拟合 1:1 线性斜率<0.4,R<0.70),使用同步训练和测试数据集。这表明机器学习为定量 Chl-a 浓度提供了一个稳健的模型。此外,考虑到通过 k-均值的三个 Rrs(λ)聚类组,Chl-a SVM 模型表明第 1 组聚类的反演性能更好(斜率=0.71,R=0.78),其次是第 3 组聚类(斜率=0.77,R=0.64)和第 2 组聚类(斜率=0.67,R=0.50)。这与第 1 组和第 3 组 Rrs(λ)光谱中 TSM 水平低和 DOC 水平高有关,这降低了 Rrs(λ)信号中红色波段颗粒的影响。我们的结果强调了使用 MSI 图像和 SVM 定量湖泊 Chl-a 浓度,这可以实现大规模监测,更适合中/低 Chl-a 水平。基于人工智能的 Chl-a 远程估算为宏观尺度上监测湖泊富营养化提供了一种有效而稳健的方法,并为阐明湖泊生态系统对全球变化的响应提供了更好的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验