Suppr超能文献

一种基于股票价格和新闻的新型集成深度学习股票预测模型。

A novel ensemble deep learning model for stock prediction based on stock prices and news.

作者信息

Li Yang, Pan Yi

机构信息

Department of Computer Science, Georgia State University, Atlanta, GA 30303 USA.

出版信息

Int J Data Sci Anal. 2022;13(2):139-149. doi: 10.1007/s41060-021-00279-9. Epub 2021 Sep 17.

Abstract

In recent years, machine learning and deep learning have become popular methods for financial data analysis, including financial textual data, numerical data, and graphical data. One of the most popular and complex deep learning in finance topics is future stock prediction. The difficulty that causes the future stock forecast is that there are too many different factors that affect the amplitude and frequency of the rise and fall of stocks at the same time. Some of the company-specific factors that can affect the share price like news releases on earnings and profits, future estimated earnings, the announcement of dividends, introduction of a new product or a product recall, secure a new large contract, employee layoffs, a major change of management, anticipated takeover or merger, and accounting errors or scandals. Furthermore, these factors are only company factors, and other factors affect the future trend of stocks, such as industry performance, investor sentiment, and economic factors. This paper proposes a novel deep learning approach to predict future stock movement. The model employs a blending ensemble learning method to combine two recurrent neural networks, followed by a fully connected neural network. In our research, we use the S&P 500 Index as our test case. Our experiments show that our blending ensemble deep learning model outperforms the best existing prediction model substantially using the same dataset, reducing the mean-squared error from 438.94 to 186.32, a 57.55% reduction, increasing precision rate by 40%, recall by 50%, 1-score by 44.78%, and movement direction accuracy by 33.34%, respectively. The purpose of this work is to explain our design philosophy and show that ensemble deep learning technologies can truly predict future stock price trends more effectively and can better assist investors in making the right investment decision than other traditional methods.

摘要

近年来,机器学习和深度学习已成为金融数据分析的常用方法,包括金融文本数据、数值数据和图形数据。金融领域最流行且复杂的深度学习主题之一是未来股票预测。导致未来股票预测困难的原因在于,同时影响股票涨跌幅度和频率的不同因素过多。一些可能影响股价的公司特定因素,如盈利和利润新闻发布、未来盈利预期、股息公告、新产品推出或产品召回、获得新的大合同、员工裁员、管理层重大变动、预期收购或合并以及会计错误或丑闻。此外,这些因素只是公司层面的,还有其他因素影响股票的未来走势,如行业表现、投资者情绪和经济因素。本文提出一种新颖的深度学习方法来预测未来股票走势。该模型采用混合集成学习方法,将两个循环神经网络与一个全连接神经网络相结合。在我们的研究中,我们使用标准普尔500指数作为测试案例。我们的实验表明,在使用相同数据集的情况下,我们的混合集成深度学习模型显著优于现有的最佳预测模型,将均方误差从438.94降至186.32,降幅达57.55%,精确率提高40%,召回率提高50%,F1分数提高44.78%,走势方向准确率提高33.34%。这项工作的目的是解释我们的设计理念,并表明集成深度学习技术能够比其他传统方法更有效地预测未来股价走势,更好地帮助投资者做出正确的投资决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6c1/8446482/0a76b5ac3212/41060_2021_279_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验