Suppr超能文献

基于深度神经网络模型的企业股价变动趋势预测。

The Prediction of Enterprise Stock Change Trend by Deep Neural Network Model.

机构信息

Accounting Institute, Guangzhou Huashang College, Guangzhou 511300, Guangdong, China.

Graduate School, Nueva Ecija University of Science and Technology, Cabanatuan 3100, Philippines.

出版信息

Comput Intell Neurosci. 2022 Aug 2;2022:9193055. doi: 10.1155/2022/9193055. eCollection 2022.

Abstract

This study aims to accurately predict the changing trend of stocks in stock trading so that company investors can obtain higher returns. In building a financial forecasting model, historical data and learned parameters are used to predict future stock prices. Firstly, the relevant theories of stock forecasting are discussed, and problems in stock forecasting are raised. Secondly, the inadequacies of deep neural network (DNN) models are discussed. A prediction trend model of enterprise stock is established based on long short-term memory (LSTM). The uniqueness and innovation lie in using the stock returns of Bank of China securities in 2022 as the training data set. LSTM prediction models are used to perform error analysis on company data training. The 20-day change trend of the company's stock returns under different models is predicted and analyzed. The results show that as the number of iterations increases, the loss rate of the LSTM training curve keeps decreasing until 0. The average return price of the LSTM prediction model is 14.01. This figure is closest to the average real return price of 13.89. Through the forecast trend analysis under different models, LSTM predicts that the stock change trend of the enterprise model is closest to the changing trend of the actual earnings price. The prediction accuracy is better than other prediction models. In addition, this study explores the characteristics of high noise and complexity of corporate stock time series, designs a DNN prediction model, and verifies the feasibility of the LSTM model to predict corporate stock changes with high accuracy.

摘要

本研究旨在准确预测股票交易中股票的变化趋势,使公司投资者能够获得更高的回报。在构建金融预测模型时,使用历史数据和学习到的参数来预测未来的股票价格。首先,讨论了股票预测的相关理论,并提出了股票预测中的问题。其次,讨论了深度神经网络(DNN)模型的不足之处。基于长短期记忆(LSTM)建立了企业股票预测趋势模型。该模型的独特性和创新性在于使用中国银行证券 2022 年的股票收益作为训练数据集。使用 LSTM 预测模型对公司数据训练进行误差分析。预测和分析了不同模型下公司股票收益的 20 天变化趋势。结果表明,随着迭代次数的增加,LSTM 训练曲线的损失率不断降低,直到 0。LSTM 预测模型的平均回报价格为 14.01。这一数字最接近 13.89 的实际平均回报价格。通过不同模型下的预测趋势分析,LSTM 预测企业模型的股票变化趋势最接近实际收益价格的变化趋势。预测精度优于其他预测模型。此外,本研究还探讨了企业股票时间序列的高噪声和复杂性特征,设计了 DNN 预测模型,并验证了 LSTM 模型对高精度预测企业股票变化的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/813c/9363192/bb20c10684a1/CIN2022-9193055.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验