IEEE Trans Biomed Eng. 2022 Mar;69(3):1111-1122. doi: 10.1109/TBME.2021.3114374. Epub 2022 Feb 18.
In this study, a novel hybrid predictive musculoskeletal model is proposed which has both motion prediction and muscular dynamics assessment capabilities.
First, a two-dimensional (2D) skeletal model with 10 degrees of freedom is used to predict a symmetric lifting motion, outputting joint angle profiles, ground reaction forces (GRFs), and center of pressure (COP). These intermediate outputs are input to the scaled musculoskeletal model in OpenSim for muscle activation and joint reaction load analysis. Finally, the experimental validation is carried out.
Static Optimization tool is used to estimate the muscle activation data in OpenSim for the predicted lifting motion. Joint reaction forces of the lumbosacral joint (L5-S1) are generated using the OpenSim Joint Reaction analysis tool. The predicted joint angles, muscle activations, and peak joint reaction forces are compared with experimental data and data from literature to validate the hybrid model.
The proposed hybrid model combines the skeletal model's rapid motion prediction with OpenSim's complex muscular dynamics assessment, and it can serve as a new generic tool for motion prediction and injury analysis in ergonomics and biomechanics.
本研究提出了一种新颖的混合预测肌肉骨骼模型,具有运动预测和肌肉动力学评估能力。
首先,使用具有 10 个自由度的二维(2D)骨骼模型来预测对称的提升运动,输出关节角度曲线、地面反作用力(GRF)和压力中心(COP)。这些中间输出被输入到 OpenSim 中的比例肌肉骨骼模型中,用于肌肉激活和关节反作用力分析。最后,进行实验验证。
使用静态优化工具来估计 OpenSim 中用于预测提升运动的肌肉激活数据。使用 OpenSim Joint Reaction 分析工具生成腰椎(L5-S1)关节的关节反作用力。将预测的关节角度、肌肉激活和峰值关节反作用力与实验数据和文献数据进行比较,以验证混合模型。
所提出的混合模型将骨骼模型的快速运动预测与 OpenSim 的复杂肌肉动力学评估相结合,可为人机工程学和生物力学中的运动预测和损伤分析提供一种新的通用工具。