Suppr超能文献

PPLD 在应用于中等规模的全基因组关联研究方面优于传统的回归方法。

The PPLD has advantages over conventional regression methods in application to moderately sized genome-wide association studies.

机构信息

Battelle Center for Mathematical Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States of America.

Department of Pediatrics, The Ohio State University, Columbus, OH, United States of America.

出版信息

PLoS One. 2021 Sep 22;16(9):e0257164. doi: 10.1371/journal.pone.0257164. eCollection 2021.

Abstract

In earlier work, we have developed and evaluated an alternative approach to the analysis of GWAS data, based on a statistic called the PPLD. More recently, motivated by a GWAS for genetic modifiers of the X-linked Mendelian disorder Duchenne Muscular Dystrophy (DMD), we adapted the PPLD for application to time-to-event (TE) phenotypes. Because DMD itself is relatively rare, this is a setting in which the very large sample sizes generally assembled for GWAS are simply not attainable. For this reason, statistical methods specially adapted for use in small data sets are required. Here we explore the behavior of the TE-PPLD via simulations, comparing the TE-PPLD with Cox Proportional Hazards analysis in the context of small to moderate sample sizes. Our results will help to inform our approach to the DMD study going forward, and they illustrate several respects in which the TE-PPLD, and by extension the original PPLD, offer advantages over regression-based approaches to GWAS in this context.

摘要

在早期的工作中,我们开发并评估了一种基于称为 PPLD 的统计量的全基因组关联研究数据的分析替代方法。最近,受 X 连锁孟德尔疾病杜氏肌营养不良症(DMD)遗传修饰因子全基因组关联研究的启发,我们对 PPLD 进行了改编,以应用于时间到事件(TE)表型。由于 DMD 本身相对罕见,因此这是一种通常无法获得用于全基因组关联研究的非常大数据集的设置。出于这个原因,需要专门针对小数据集使用的统计方法。在这里,我们通过模拟来探索 TE-PPLD 的行为,在小到中等样本量的情况下,将 TE-PPLD 与 Cox 比例风险分析进行比较。我们的结果将有助于为我们今后的 DMD 研究提供信息,并且它们说明了在这种情况下,TE-PPLD(以及扩展的原始 PPLD)相对于基于回归的全基因组关联研究方法在几个方面具有优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a13a/8457474/742bc545259c/pone.0257164.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验