Battelle Center for Mathematical Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States of America.
Department of Pediatrics, The Ohio State University, Columbus, OH, United States of America.
PLoS One. 2020 May 4;15(5):e0232300. doi: 10.1371/journal.pone.0232300. eCollection 2020.
In linear regression, a residual measures how far a subject's observation is from expectation; in survival analysis, a subject's Martingale or deviance residual is sometimes interpreted similarly. Here we consider ways in which a linear regression-like interpretation is not appropriate for Martingale and deviance residuals, and we develop a novel time-to-event residual which does have a linear regression-like interpretation. We illustrate the utility of this new residual via simulation of a time-to-event genome-wide association study, motivated by a real study seeking genetic modifiers of Duchenne Muscular Dystrophy. By virtue of its linear regression-like characteristics, our new residual may prove useful in other contexts as well.
在线性回归中,残差衡量的是一个观测值与预期值的偏离程度;在生存分析中,有时也会以类似的方式解释一个观测值的鞅残差或偏差残差。在这里,我们考虑了一种线性回归式解释不适用于鞅残差和偏差残差的情况,并开发了一种新的、具有类似线性回归式解释的事件时间残差。我们通过模拟一个基于事件的全基因组关联研究来演示这个新残差的实用性,这个研究是受寻找杜氏肌营养不良症遗传修饰因子的真实研究启发的。由于其具有线性回归式的特征,我们的新残差在其他情况下也可能有用。