Keck Center for Science and Engineering, Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States.
Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States.
J Chem Inf Model. 2021 Oct 25;61(10):5172-5191. doi: 10.1021/acs.jcim.1c00766. Epub 2021 Sep 22.
We developed a computational framework for comprehensive and rapid mutational scanning of binding energetics and residue interaction networks in the SARS-CoV-2 spike protein complexes. Using this approach, we integrated atomistic simulations and conformational landscaping of the SARS-CoV-2 spike protein complexes with ensemble-based mutational screening and network modeling to characterize mechanisms of structure-functional mimicry and resilience toward mutational escape by the ACE2 protein decoy and de novo designed miniprotein inhibitors. A detailed analysis of structural plasticity of the SARS-CoV-2 spike proteins obtained from atomistic simulations of conformational landscapes and sequence-based profiling of the disorder propensities revealed the intrinsically flexible regions that harbor key functional sites targeted by circulating variants. The conservation of collective dynamics in the SARS-CoV-2 spike protein complexes showed that mutational escape positions are important for modulation of functional motions and that mutational changes in these sites can alter allosteric interaction networks. Through mutational profiling of binding and allosteric propensities in the SARS-CoV-2 spike protein complexes, we identified the key binding and regulatory hotspots that collectively determine functional response and resilience of miniproteins to mutational variants. The results suggest that binding affinities and allosteric signatures of the SARS-CoV-2 complexes can be determined by dynamic crosstalk between structurally stable regulatory centers and conformationally adaptable allosteric hotspots that collectively control the resilience toward mutational escape. This may underlie a mechanism in which moderate perturbations in the mutational escape positions can induce global allosteric changes and alter functional protein response by modulating signaling in the residue interaction networks.
我们开发了一种计算框架,用于全面快速地扫描 SARS-CoV-2 刺突蛋白复合物的结合能和残基相互作用网络的突变。通过这种方法,我们将 SARS-CoV-2 刺突蛋白复合物的原子模拟和构象景观与基于集合的突变筛选和网络建模相结合,以表征结构功能模拟和对 ACE2 蛋白诱饵和从头设计的小分子抑制剂突变逃逸的机制。通过对构象景观的原子模拟和无规卷曲倾向的序列分析获得的 SARS-CoV-2 刺突蛋白的结构可塑性的详细分析,揭示了固有灵活的区域,这些区域包含循环变体靶向的关键功能位点。SARS-CoV-2 刺突蛋白复合物的集体动力学的保守性表明,突变逃逸位置对于功能运动的调节很重要,这些位点的突变变化可以改变变构相互作用网络。通过对 SARS-CoV-2 刺突蛋白复合物的结合和变构倾向进行突变分析,我们确定了关键的结合和调节热点,这些热点共同决定了小分子对突变变体的功能反应和弹性。结果表明,SARS-CoV-2 复合物的结合亲和力和变构特征可以通过结构稳定的调节中心和构象适应性变构热点之间的动态串扰来确定,这些热点共同控制着对突变逃逸的弹性。这可能是一种机制,其中突变逃逸位置的适度扰动可以诱导全局变构变化,并通过调节残基相互作用网络中的信号来改变功能蛋白反应。