Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States.
Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States.
J Chem Inf Model. 2023 Aug 28;63(16):5272-5296. doi: 10.1021/acs.jcim.3c00778. Epub 2023 Aug 7.
The new generation of SARS-CoV-2 Omicron variants displayed a significant growth advantage and increased viral fitness by acquiring convergent mutations, suggesting that the immune pressure can promote convergent evolution leading to the sudden acceleration of SARS-CoV-2 evolution. In the current study, we combined structural modeling, microsecond molecular dynamics simulations, and Markov state models to characterize conformational landscapes and identify specific dynamic signatures of the SARS-CoV-2 spike complexes with the host receptor ACE2 for the recently emerged highly transmissible XBB.1, XBB.1.5, BQ.1, and BQ.1.1 Omicron variants. Microsecond simulations and Markovian modeling provided a detailed characterization of the functional conformational states and revealed the increased thermodynamic stabilization of the XBB.1.5 subvariant, which can be contrasted to more dynamic BQ.1 and BQ.1.1 subvariants. Despite considerable structural similarities, Omicron mutations can induce unique dynamic signatures and specific distributions of the conformational states. The results suggested that variant-specific changes of the conformational mobility in the functional interfacial loops of the receptor-binding domain in the SARS-CoV-2 spike protein can be fine-tuned through crosstalk between convergent mutations which could provide an evolutionary path for modulation of immune escape. By combining atomistic simulations and Markovian modeling analysis with perturbation-based approaches, we determined important complementary roles of convergent mutation sites as effectors and receivers of allosteric signaling involved in modulation of conformational plasticity and regulation of allosteric communications. This study also revealed hidden allosteric pockets and suggested that convergent mutation sites could control evolution and distribution of allosteric pockets through modulation of conformational plasticity in the flexible adaptable regions.
新一代的 SARS-CoV-2 奥密克戎变体通过获得趋同突变显示出显著的生长优势和更高的病毒适应性,这表明免疫压力可以促进趋同进化,导致 SARS-CoV-2 进化的突然加速。在本研究中,我们结合结构建模、微秒分子动力学模拟和马科夫状态模型,对最近出现的高传播性 XBB.1、XBB.1.5、BQ.1 和 BQ.1.1 奥密克戎变体与宿主受体 ACE2 的 SARS-CoV-2 刺突复合物的构象景观进行了特征描述,并确定了特定的动态特征。微秒模拟和马科夫模型为功能构象状态提供了详细的特征描述,并揭示了 XBB.1.5 亚变体的热力学稳定性增加,这可以与更具动态性的 BQ.1 和 BQ.1.1 亚变体形成对比。尽管存在相当大的结构相似性,但奥密克戎突变可以诱导独特的动态特征和构象状态的特定分布。结果表明,受体结合域中功能界面环的构象流动性的变体特异性变化可以通过趋同突变之间的串扰进行微调,这为免疫逃避的调节提供了进化途径。通过将原子模拟和马科夫模型分析与基于扰动的方法相结合,我们确定了趋同突变位点作为变构信号的效应子和接收器的重要互补作用,这些效应子和接收器涉及构象可塑性的调节和变构通讯的调节。本研究还揭示了隐藏的变构口袋,并表明趋同突变位点可以通过调节柔性适应区域的构象可塑性来控制变构口袋的进化和分布。