Suppr超能文献

开发一种用于估计 SARS-CoV-2 关注变体的流行病学特征的模型推断系统。

Development of a model-inference system for estimating epidemiological characteristics of SARS-CoV-2 variants of concern.

机构信息

Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.

Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.

出版信息

Nat Commun. 2021 Sep 22;12(1):5573. doi: 10.1038/s41467-021-25913-9.

Abstract

To support COVID-19 pandemic planning, we develop a model-inference system to estimate epidemiological properties of new SARS-CoV-2 variants of concern using case and mortality data while accounting for under-ascertainment, disease seasonality, non-pharmaceutical interventions, and mass-vaccination. Applying this system to study three variants of concern, we estimate that B.1.1.7 has a 46.6% (95% CI: 32.3-54.6%) transmissibility increase but nominal immune escape from protection induced by prior wild-type infection; B.1.351 has a 32.4% (95% CI: 14.6-48.0%) transmissibility increase and 61.3% (95% CI: 42.6-85.8%) immune escape; and P.1 has a 43.3% (95% CI: 30.3-65.3%) transmissibility increase and 52.5% (95% CI: 0-75.8%) immune escape. Model simulations indicate that B.1.351 and P.1 could outcompete B.1.1.7 and lead to increased infections. Our findings highlight the importance of preventing the spread of variants of concern, via continued preventive measures, prompt mass-vaccination, continued vaccine efficacy monitoring, and possible updating of vaccine formulations to ensure high efficacy.

摘要

为支持 COVID-19 大流行规划,我们开发了一个模型推断系统,使用病例和死亡率数据来估计新的 SARS-CoV-2 关注变异株的流行病学特性,同时考虑到未确定的病例、疾病季节性、非药物干预措施和大规模疫苗接种。应用该系统研究三种关注变异株,我们估计 B.1.1.7 的传播能力增加了 46.6%(95%CI:32.3-54.6%),但对先前野生型感染诱导的保护具有名义上的免疫逃逸;B.1.351 的传播能力增加了 32.4%(95%CI:14.6-48.0%),免疫逃逸能力增加了 61.3%(95%CI:42.6-85.8%);而 P.1 的传播能力增加了 43.3%(95%CI:30.3-65.3%),免疫逃逸能力增加了 52.5%(95%CI:0-75.8%)。模型模拟表明,B.1.351 和 P.1 可能会超过 B.1.1.7,导致感染增加。我们的研究结果强调了通过持续的预防措施、及时的大规模疫苗接种、持续的疫苗效力监测以及可能更新疫苗配方来防止关注变异株传播的重要性,以确保高疗效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/016e/8458278/4644530143c1/41467_2021_25913_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验