Fijalkowski Kajetan M, Liu Nan, Mandal Pankaj, Schreyeck Steffen, Brunner Karl, Gould Charles, Molenkamp Laurens W
Faculty for Physics and Astronomy (EP3), Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany.
Institute for Topological Insulators, Am Hubland, D-97074, Würzburg, Germany.
Nat Commun. 2021 Sep 22;12(1):5599. doi: 10.1038/s41467-021-25912-w.
Achieving metrological precision of quantum anomalous Hall resistance quantization at zero magnetic field so far remains limited to temperatures of the order of 20 mK, while the Curie temperature in the involved material is as high as 20 K. The reason for this discrepancy remains one of the biggest open questions surrounding the effect, and is the focus of this article. Here we show, through a careful analysis of the non-local voltages on a multi-terminal Corbino geometry, that the chiral edge channels continue to exist without applied magnetic field up to the Curie temperature of bulk ferromagnetism of the magnetic topological insulator, and that thermally activated bulk conductance is responsible for this quantization breakdown. Our results offer important insights on the nature of the topological protection of these edge channels, provide an encouraging sign for potential applications, and establish the multi-terminal Corbino geometry as a powerful tool for the study of edge channel transport in topological materials.
迄今为止,在零磁场下实现量子反常霍尔电阻量子化的计量精度仍仅限于约20 mK的温度,而所涉材料的居里温度高达20 K。这种差异的原因仍然是围绕该效应的最大悬而未决的问题之一,也是本文的重点。在这里,我们通过对多端科贝诺几何结构上的非局部电压进行仔细分析表明,手性边缘通道在不施加磁场的情况下一直存在,直至磁性拓扑绝缘体体铁磁性的居里温度,并且热激活的体电导率是这种量子化崩溃的原因。我们的结果为这些边缘通道的拓扑保护性质提供了重要见解,为潜在应用提供了令人鼓舞的迹象,并将多端科贝诺几何结构确立为研究拓扑材料中边缘通道输运的有力工具。