Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
ACS Nano. 2023 Jun 13;17(11):9694-9747. doi: 10.1021/acsnano.2c12759. Epub 2023 May 23.
Two-dimensional (2D) material research is rapidly evolving to broaden the spectrum of emergent 2D systems. Here, we review recent advances in the theory, synthesis, characterization, device, and quantum physics of 2D materials and their heterostructures. First, we shed insight into modeling of defects and intercalants, focusing on their formation pathways and strategic functionalities. We also review machine learning for synthesis and sensing applications of 2D materials. In addition, we highlight important development in the synthesis, processing, and characterization of various 2D materials (e.g., MXnenes, magnetic compounds, epitaxial layers, low-symmetry crystals, etc.) and discuss oxidation and strain gradient engineering in 2D materials. Next, we discuss the optical and phonon properties of 2D materials controlled by material inhomogeneity and give examples of multidimensional imaging and biosensing equipped with machine learning analysis based on 2D platforms. We then provide updates on mix-dimensional heterostructures using 2D building blocks for next-generation logic/memory devices and the quantum anomalous Hall devices of high-quality magnetic topological insulators, followed by advances in small twist-angle homojunctions and their exciting quantum transport. Finally, we provide the perspectives and future work on several topics mentioned in this review.
二维(2D)材料研究正在迅速发展,以拓宽新兴 2D 系统的光谱。在这里,我们回顾了 2D 材料及其异质结构的理论、合成、表征、器件和量子物理学方面的最新进展。首先,我们深入了解了缺陷和插层的建模,重点介绍了它们的形成途径和战略功能。我们还回顾了机器学习在 2D 材料合成和传感应用中的应用。此外,我们强调了各种 2D 材料(例如 MXenes、磁性化合物、外延层、低对称晶体等)的合成、加工和表征方面的重要进展,并讨论了 2D 材料中的氧化和应变梯度工程。接下来,我们讨论了由材料非均匀性控制的 2D 材料的光学和声子特性,并举例说明了基于 2D 平台的多维成像和生物传感,以及配备机器学习分析的设备。然后,我们提供了使用 2D 构建块的混合维度异质结构的最新进展,用于下一代逻辑/存储器件和高质量磁性拓扑绝缘体的量子反常霍尔器件,以及小扭转角同结及其令人兴奋的量子输运方面的进展。最后,我们提供了对本综述中提到的几个主题的观点和未来工作。