Johnson Zachary A, Sciolino Natale R, Plummer Nicholas W, Harrison Patrick R, Jensen Patricia, Robertson Sabrina D
Virginia Tech, Department of Biological Sciences, Blacksburg, VA 24060, USA.
Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA.
J Undergrad Neurosci Educ. 2021 Jun 20;19(2):A226-A259. eCollection 2021 Spring.
Neuroscience research is changing at an incredible pace due to technological innovation and recent national and global initiatives such as the BRAIN initiative. Given the wealth of data supporting the value of course-based undergraduate research experiences (CUREs) for students, we developed and assessed a neurotechnology CURE, . The goal of the course is to immerse undergraduate and graduate students in research and to explore technological advances in neuroscience. In the laboratory portion of the course, students pursued a hypothesis-driven, collaborative National Institutes of Health (NIH) research project. Using chemogenetic technology (Designer Receptors Exclusively Activated by Designer Drugs-DREADDs) and a recombinase-based intersectional genetic strategy, students mapped norepinephrine neurons, and their projections and explored the effects of activating these neurons . In lecture, students compared traditional and cutting-edge neuroscience methodologies, analyzed primary literature, designed hypothesis-based experiments, and discussed technological limitations of studying the brain. Over two consecutive years in the Program at North Carolina State University, we assessed student learning and perceptions of learning based on Society for Neuroscience's (SfN) core concepts and essential principles of neuroscience. Using analysis of student assignments and pre/post content and perception-based course surveys, we also assessed whether the course improved student research article analysis and neurotechnology assessment. Our analyses reveal new insights and pedagogical approaches for engaging students in research and improving their critical analysis of research articles and neurotechnologies. Our data also show that our multifaceted approach increased student confidence and promoted a data focused mentality when tackling research literature. Through the integration of authentic research and a neurotechnology focus, provides a unique model as a modern neuroscience laboratory course.
由于技术创新以及近期诸如“脑计划”(BRAIN initiative)等国家和全球倡议,神经科学研究正以前所未有的速度发生变化。鉴于有大量数据支持基于课程的本科研究经历(CUREs)对学生的价值,我们开发并评估了一门神经技术CURE课程。该课程的目标是让本科生和研究生沉浸于研究之中,并探索神经科学领域的技术进步。在课程的实验室部分,学生们开展了一个由假设驱动的、合作的美国国立卫生研究院(NIH)研究项目。学生们使用化学遗传学技术(仅由设计药物激活的设计受体——DREADDs)和基于重组酶的交叉遗传策略,绘制去甲肾上腺素能神经元及其投射图谱,并探索激活这些神经元的效果。在课堂上,学生们比较了传统和前沿的神经科学方法,分析了原始文献,设计了基于假设的实验,并讨论了研究大脑的技术局限性。在北卡罗来纳州立大学的这个项目中,连续两年,我们基于神经科学学会(SfN)的核心概念和神经科学基本原理,评估了学生的学习情况以及对学习的认知。通过对学生作业以及基于内容和认知的课前/课后课程调查的分析,我们还评估了该课程是否提高了学生对研究文章的分析能力和神经技术评估能力。我们的分析揭示了让学生参与研究并提高他们对研究文章和神经技术批判性分析的新见解和教学方法。我们的数据还表明,我们的多方面方法增强了学生的信心,并在处理研究文献时培养了以数据为导向的思维方式。通过整合真实研究和神经技术重点,作为一门现代神经科学实验室课程提供了一个独特的模式。