Suppr超能文献

微妙的侧链引发意想不到的双通道电荷传输特性,实现80%的填充因子和高效的厚膜有机光伏。

Subtle Side Chain Triggers Unexpected Two-Channel Charge Transport Property Enabling 80% Fill Factors and Efficient Thick-Film Organic Photovoltaics.

作者信息

Li Yonghai, Yu Lu, Chen Liangliang, Han Chenyu, Jiang Huanxiang, Liu Zitong, Zheng Nan, Wang Jiuxing, Sun Mingliang, Yang Renqiang, Bao Xichang

机构信息

CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.

Functional Laboratory of Solar Energy, Shandong Energy Institute, Qingdao 266101, China.

出版信息

Innovation (Camb). 2021 Feb 5;2(1):100090. doi: 10.1016/j.xinn.2021.100090. eCollection 2021 Feb 28.

Abstract

To clearly show how important the impact of side chains on organic solar cells (OSCs) is, we designed three acceptors IDIC-CPh ( = 4, 5, or 6) via subtle side-chain regulation. Despite this small change, significant distinctions were detected. IDIC-C4Ph devices achieve an optimal efficiency of 13.94% under thermal annealing, but thermal-assistant solvent-vapor annealing hugely suppresses the efficiencies to 10%. However, the C6Ph side chain endows extremely disordered stacking orientations, generating moderate efficiencies of ~12.50%. Excitingly, the IDIC-C5Ph affords an unexpected two-channel π-π charge transport (TCCT) property, boosting the fill factor (FF) by up to 80.02% and efficiency to 14.56%, ranking the best among five-ring fused-ladder-type acceptors. Impressively, the special TCCT behavior of IDIC-C5Ph enables 470 nm thick-film OSC with a high FF of up to 70.12% and efficiency of 13.01%, demonstrating the great promise in fabricating large-scale OSCs.

摘要

为了清楚地展示侧链对有机太阳能电池(OSC)的影响有多重要,我们通过微调侧链设计了三种受体IDIC-CPh( = 4、5或6)。尽管有这个小变化,但仍检测到了显著差异。IDIC-C4Ph器件在热退火下实现了13.94%的最佳效率,但热辅助溶剂蒸汽退火极大地将效率抑制到了10%。然而,C6Ph侧链赋予了极其无序的堆积取向,产生了约12.50%的中等效率。令人兴奋的是,IDIC-C5Ph具有意想不到的双通道π-π电荷传输(TCCT)特性,将填充因子(FF)提高了80.02%,效率提高到14.56%,在五环稠合梯形受体中排名最佳。令人印象深刻的是,IDIC-C5Ph的特殊TCCT行为使470nm厚膜OSC具有高达70.12%的高FF和13.01%的效率,这表明在制造大规模OSC方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0c7/8454635/79fe929a2c1a/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验