Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091, Zurich, Switzerland.
Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
Eur Radiol. 2022 Mar;32(3):1823-1832. doi: 10.1007/s00330-021-08245-6. Epub 2021 Sep 24.
To investigate, in patients with metastatic prostate cancer, whether radiomics of computed tomography (CT) image data enables the differentiation of bone metastases not visible on CT from unaffected bone using Ga-PSMA PET imaging as reference standard.
In this IRB-approved retrospective study, 67 patients (mean age 71 ± 7 years; range: 55-84 years) showing a total of 205 Ga-PSMA-positive prostate cancer bone metastases in the thoraco-lumbar spine and pelvic bone being invisible in CT were included. Metastases and 86 Ga-PSMA-negative bone volumes in the same body region were segmented and further post-processed. Intra- and inter-reader reproducibility was assessed, with ICCs < 0.90 being considered non-reproducible. To account for imbalances in the dataset, data augmentation was performed to achieve improved class balance and to avoid model overfitting. The dataset was split into training, test, and validation set. After a multi-step dimension reduction process and feature selection process, the 11 most important and independent features were selected for statistical analyses.
A gradient-boosted tree was trained on the selected 11 radiomic features in order to classify patients' bones into bone metastasis and normal bone using the training dataset. This trained model achieved a classification accuracy of 0.85 (95% confidence interval [CI]: 0.76-0.92, p < .001) with 78% sensitivity and 93% specificity. The tuned model was applied on the original, non-augmented dataset resulting in a classification accuracy of 0.90 (95% CI: 0.82-0.98) with 91% sensitivity and 88% specificity.
Our proof-of-concept study indicates that radiomics may accurately differentiate unaffected bone from metastatic bone, being invisible by the human eye on CT.
• This proof-of-concept study showed that radiomics applied on CT images may accurately differentiate between bone metastases and metastatic-free bone in patients with prostate cancer. • Future promising applications include automatic bone segmentation, followed by a radiomics classifier, allowing for a screening-like approach in the detection of bone metastases.
在转移性前列腺癌患者中,研究 CT 图像数据的放射组学是否能够将 CT 未显示的骨转移与正常骨区分开来,以 Ga-PSMA PET 成像作为参考标准。
本研究为经过伦理委员会批准的回顾性研究,共纳入 67 例患者(平均年龄 71±7 岁;范围:55-84 岁),这些患者共计 205 处胸腰椎和骨盆的 Ga-PSMA 阳性前列腺癌骨转移灶在 CT 上不可见。对同一身体区域的转移灶和 86 处 Ga-PSMA 阴性骨体积进行分割和进一步后处理。评估了内部和外部读者的可重复性,ICC<0.90 被认为是不可重复的。为了弥补数据集的不平衡,进行了数据扩充,以实现更好的类别平衡,并避免模型过拟合。数据集分为训练集、测试集和验证集。在经过多步降维处理和特征选择过程后,选择了 11 个最重要和独立的特征进行统计分析。
在选定的 11 个放射组学特征上训练梯度提升树,以使用训练数据集将患者的骨骼分为骨转移和正常骨。该训练模型在训练数据集上实现了 0.85 的分类准确率(95%置信区间[CI]:0.76-0.92,p<.001),灵敏度为 78%,特异性为 93%。经调整的模型应用于原始、未经扩充的数据集,分类准确率为 0.90(95%CI:0.82-0.98),灵敏度为 91%,特异性为 88%。
我们的概念验证研究表明,放射组学可以准确区分 CT 上肉眼不可见的转移骨和正常骨。
• 本概念验证研究表明,应用于 CT 图像的放射组学可以准确区分前列腺癌患者的骨转移和无转移骨。• 未来有前景的应用包括自动骨骼分割,随后是放射组学分类器,允许在检测骨转移时采用类似筛查的方法。