Suppr超能文献

一项基于前列腺周围脂肪组织的F-PSMA-1007 PET/CT预测前列腺癌短期预后的动态在线列线图:一项多中心研究。

A dynamic online nomogram predicting prostate cancer short-term prognosis based on F-PSMA-1007 PET/CT of periprostatic adipose tissue: a multicenter study.

作者信息

Bian Shuying, Hong Weifeng, Su Xinhui, Yao Fei, Yuan Yaping, Zhang Yayun, Xie Jiageng, Li Tiancheng, Pan Kehua, Xue Yingnan, Zhang Qiongying, Yu Zhixian, Tang Kun, Yang Yunjun, Zhuang Yuandi, Lin Jie, Xu Hui

机构信息

The Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.

The Department of Radiology, The People's Hospital of Yuhuan, Yuhuan, China.

出版信息

Abdom Radiol (NY). 2024 Oct;49(10):3747-3757. doi: 10.1007/s00261-024-04421-6. Epub 2024 Jun 18.

Abstract

BACKGROUND

Rising prostate-specific antigen (PSA) levels following radical prostatectomy are indicative of a poor prognosis, which may associate with periprostatic adipose tissue (PPAT). Accordingly, we aimed to construct a dynamic online nomogram to predict tumor short-term prognosis based on F-PSMA-1007 PET/CT of PPAT.

METHODS

Data from 268 prostate cancer (PCa) patients who underwent F-PSMA-1007 PET/CT before prostatectomy were analyzed retrospectively for model construction and validation (training cohort: n = 156; internal validation cohort: n = 65; external validation cohort: n = 47). Radiomics features (RFs) from PET and CT were extracted. Then, the Rad-score was constructed using logistic regression analysis based on the 25 optimal RFs selected through maximal relevance and minimal redundancy, as well as the least absolute shrinkage and selection operator. A nomogram was constructed to predict short-term prognosis which determined by persistent PSA.

RESULTS

The Rad-score consisting of 25 RFs showed good discrimination for classifying persistent PSA in all cohorts (all P < 0.05). Based on the logistic analysis, the radiomics-clinical combined model, which contained the optimal RFs and the predictive clinical variables, demonstrated optimal performance at an AUC of 0.85 (95% CI: 0.78-0.91), 0.77 (95% CI: 0.62-0.91) and 0.84 (95% CI: 0.70-0.93) in the training, internal validation and external validation cohorts. In all cohorts, the calibration curve was well-calibrated. Analysis of decision curves revealed greater clinical utility for the radiomics-clinical combined nomogram.

CONCLUSION

The radiomics-clinical combined nomogram serves as a novel tool for preoperative individualized prediction of short-term prognosis among PCa patients.

摘要

背景

根治性前列腺切除术后前列腺特异性抗原(PSA)水平升高提示预后不良,这可能与前列腺周围脂肪组织(PPAT)有关。因此,我们旨在构建一个动态在线列线图,基于PPAT的F-PSMA-1007 PET/CT预测肿瘤短期预后。

方法

回顾性分析268例前列腺癌(PCa)患者在前列腺切除术前接受F-PSMA-1007 PET/CT的数据,用于模型构建和验证(训练队列:n = 156;内部验证队列:n = 65;外部验证队列:n = 47)。提取PET和CT的影像组学特征(RFs)。然后,基于通过最大相关性和最小冗余以及最小绝对收缩和选择算子选择的25个最佳RFs,使用逻辑回归分析构建Rad评分。构建列线图以预测由持续PSA决定的短期预后。

结果

由25个RFs组成的Rad评分在所有队列中对持续PSA的分类具有良好的区分能力(所有P < 0.05)。基于逻辑分析,包含最佳RFs和预测临床变量的影像组学-临床联合模型在训练、内部验证和外部验证队列中的AUC分别为0.85(95% CI:0.78 - 0.91)、0.77(95% CI:0.62 - 0.91)和0.84(95% CI:0.70 - 0.93),表现最佳。在所有队列中,校准曲线校准良好。决策曲线分析显示影像组学-临床联合列线图具有更大的临床实用性。

结论

影像组学-临床联合列线图是一种用于PCa患者术前个体化预测短期预后的新型工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验