Suppr超能文献

通过引入银的界面三维纳米结构增强图案化MoS修饰的硅基光阴极的H演化

Enhanced H Evolution at Patterned MoS-Modified Si-Based Photocathodes by Incorporating the Interfacial 3D Nanostructure of Ag.

作者信息

Seo Daye, Kim Ji Tae, Hwang Dae-Woong, Kim Da Yeon, Lim Sung Yul, Chung Taek Dong

机构信息

Department of Chemistry, Seoul National University, Seoul 08826, Korea.

Department of Chemistry and Research Institute for Basic Science, Kyung Hee University, Seoul 02447, Korea.

出版信息

ACS Appl Mater Interfaces. 2021 Oct 6;13(39):46499-46506. doi: 10.1021/acsami.1c08867. Epub 2021 Sep 24.

Abstract

Photoelectrochemical cells represent one of the promising ways to renewably produce hydrogen (H) as a future chemical fuel. The design of a catalyst/semiconductor junction for the hydrogen evolution reaction (HER) requires various factors for high performance. In catalytic materials, an intrinsic activity with fast charge-transfer kinetics is important. Additionally, their thermodynamic property and physical adhesion should be compatible with the underlying semiconductor for favorable band alignment and stability during vigorous H bubble formation. Moreover, catalysts, especially non-noble materials that demand a large amount of loading, should be adequately dispersed on the semiconductor surface to allow sufficient light absorption to generate excitons. One of the methods to simultaneously satisfy these conditions is to adopt an interfacial layer between the semiconductor and active materials in HER. The interfacial layer efficiently extracts the electrons from the semiconductor and conveys those to the catalytically active surface. We demonstrate Ag as a 3D interfacial nanostructure of patterned MoS catalysts for photoelectrochemical HER. The nanostructured porous Ag layer was introduced by a simple chemical process, followed by photoelectrochemical deposition of MoS to form MoS/Ag nanostructures in cross-shaped catalyst pattern arrays. Ag modulated the surface electronic property of MoS to improve the reaction kinetics as well as helped a charge transport at the Ag|p-Si(100) junction. The physically stable adhesion of catalysts was also achieved despite the ∼40 nm thick catalysts owing to the interfacial Ag nanostructure. This work contributes to further understand the complex multistep HER from light absorption to charge transfer to protons, helping to develop cost-effective and efficient photocathodes.

摘要

光电化学电池是可再生生产氢气(H)作为未来化学燃料的一种有前景的方式。用于析氢反应(HER)的催化剂/半导体结的设计需要多种因素来实现高性能。在催化材料中,具有快速电荷转移动力学的本征活性很重要。此外,它们的热力学性质和物理附着力应与底层半导体相匹配,以在剧烈的H气泡形成过程中实现有利的能带排列和稳定性。而且,催化剂,尤其是需要大量负载的非贵金属材料,应充分分散在半导体表面,以允许足够的光吸收来产生激子。同时满足这些条件的方法之一是在HER中的半导体和活性材料之间采用界面层。该界面层有效地从半导体中提取电子,并将其输送到催化活性表面。我们展示了Ag作为用于光电化学HER的图案化MoS催化剂的3D界面纳米结构。通过简单的化学过程引入纳米结构化的多孔Ag层,随后进行MoS的光电化学沉积,以在十字形催化剂图案阵列中形成MoS/Ag纳米结构。Ag调节了MoS的表面电子性质,以改善反应动力学,并有助于在Ag|p-Si(100)结处进行电荷传输。尽管催化剂厚度约为40nm,但由于界面Ag纳米结构,仍实现了催化剂的物理稳定附着。这项工作有助于进一步理解从光吸收到电荷转移到质子的复杂多步HER,有助于开发具有成本效益和高效的光阴极。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验