IEEE Trans Biomed Eng. 2022 Mar;69(3):1162-1172. doi: 10.1109/TBME.2021.3115144. Epub 2022 Feb 18.
This study develops a biomedical ultrasound imaging method to infer microstructural information (i.e., tissue level) from imaging mechanical behavior of skeletal muscle (i.e., organ level).
We first reviewed the constitutive model of skeletal muscle by regarding it as a transversely isotropic (TI) hyperelastic composite material, for which a theoretical formula was established among shear wave speed, deformation, and material parameters (MPs) using the acoustoelasticity theory. The formula was evaluated by finite element (FE) simulations and experimentally examined using ultrasound shear wave imaging (SWI) and strain imaging (SI) on in vivo passive biceps brachii muscles of two healthy volunteers. The imaging sequence included 1) generation of SW in multiple propagation directions while resting the muscle at an elbow angle of 90°; 2) generation of SW propagating along the myofiber direction during continuous uniaxial muscle extension by passively changing the elbow angle from 90° to 120°. Ultrasound-quantified SW speeds and muscle deformations were fitted by the theoretical formula to estimate MPs of in vivo passive muscle.
Estimated myofiber stiffness, stiffness ratio of myofiber to extracellular matrix (ECM), and ECM volume ratio all agreed with literature findings.
The proposed mathematical formula together with our in-house ultrasound imaging method enabled assessment of microstructural material properties of in vivo passive skeletal muscle from organ-level mechanical behavior in an entirely noninvasive way.
Noninvasive assessment of both micro and macro properties of in vivo skeletal muscle will advance our understanding of complex muscle dynamics and facilitate treatment and rehabilitation planning.
本研究开发了一种生物医学超声成像方法,以从骨骼肌的成像机械行为(即器官水平)推断微观结构信息(即组织水平)。
我们首先将骨骼肌视为各向异性(TI)超弹性复合材料,通过声弹性理论建立了剪切波速度、变形和材料参数(MPs)之间的理论公式。该公式通过有限元(FE)模拟进行了评估,并使用两名健康志愿者的活体肱二头肌被动超声剪切波成像(SWI)和应变成像(SI)进行了实验检验。成像序列包括:1)在肌肉处于 90°肘部角度时,在多个传播方向上产生 SW;2)在连续单轴肌肉伸展过程中,通过被动地将肘部角度从 90°改变到 120°,产生沿肌纤维方向传播的 SW。通过理论公式拟合超声量化的 SW 速度和肌肉变形,以估计活体被动肌肉的 MPs。
估计的肌纤维刚度、肌纤维与细胞外基质(ECM)的刚度比和 ECM 体积比均与文献结果一致。
所提出的数学公式和我们的内部超声成像方法使我们能够以完全非侵入性的方式从器官水平的机械行为评估活体被动骨骼肌的微观结构材料特性。
对活体骨骼肌的微观和宏观特性的非侵入性评估将加深我们对复杂肌肉动力学的理解,并有助于治疗和康复计划的制定。