Suppr超能文献

旋转式 3D 剪切波弹性成像:膝关节弯曲对活体股外侧肌 3D 剪切波传播的影响。

Rotational 3D shear wave elasticity imaging: Effect of knee flexion on 3D shear wave propagation in in vivo vastus lateralis.

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC, USA; Applied Research Laboratories, The University of Texas at Austin, Austin, TX, USA.

Department of Biomedical Engineering, Duke University, Durham, NC, USA; Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA.

出版信息

J Mech Behav Biomed Mater. 2024 Feb;150:106302. doi: 10.1016/j.jmbbm.2023.106302. Epub 2023 Dec 23.

Abstract

Skeletal muscle is a complex tissue, exhibiting not only direction-dependent material properties (commonly modeled as a transversely isotropic material), but also changes in observed material properties due to factors such as contraction and passive stretch. In this work, we evaluated the effect of muscle passive stretch on shear wave propagation along and across the muscle fibers using a rotational 3D shear wave elasticity imaging system and automatic analysis methods. We imaged the vastus lateralis of 10 healthy volunteers, modulating passive stretch by imaging at 8 different knee flexion angles (controlled by a BioDex system). In addition to demonstrating the ability of this acquisition and automatic processing system to estimate muscle shear moduli over a range of values, we evaluated potential higher order biomarkers for muscle health that capture the change in muscle stiffness along and across the fibers with changing knee flexion. The median within-subject variability of these biomarkers is found to be <16%, suggesting promise as a repeatable clinical metric. Additionally, we report an unexpected observation: that shear wave signal amplitude along the fibers increases with increasing flexion and muscle stiffness, which is not predicted by transversely isotropic (TI) material simulations. This observation may point to an additional potential biomarker for muscle health or inform other material modeling choices for muscle.

摘要

骨骼肌是一种复杂的组织,不仅具有各向异性的材料特性(通常建模为各向同性材料),而且由于收缩和被动拉伸等因素,观察到的材料特性也会发生变化。在这项工作中,我们使用旋转式 3D 剪切波弹性成像系统和自动分析方法,评估了肌肉被动拉伸对沿肌纤维和垂直于肌纤维的剪切波传播的影响。我们对 10 名健康志愿者的股外侧肌进行了成像,通过在 8 个不同的膝关节弯曲角度(由 BioDex 系统控制)进行成像来调节被动拉伸。除了证明这种采集和自动处理系统能够在一定范围内估计肌肉剪切模量的能力外,我们还评估了潜在的更高阶的肌肉健康生物标志物,这些生物标志物可以捕捉到随着膝关节弯曲而改变的纤维内和纤维间的肌肉硬度变化。这些生物标志物的个体内中位数变异性被发现小于 16%,这表明它们具有作为可重复的临床指标的潜力。此外,我们还报告了一个意外的观察结果:即纤维内的剪切波信号幅度随弯曲度和肌肉硬度的增加而增加,这与各向同性(TI)材料模拟不一致。这一观察结果可能为肌肉健康提供了另一个潜在的生物标志物,或者为肌肉的其他材料建模选择提供了信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验