Suppr超能文献

用于训练支持向量机的深度特征

Deep Features for Training Support Vector Machines.

作者信息

Nanni Loris, Ghidoni Stefano, Brahnam Sheryl

机构信息

Department of Information Engineering (DEI), University of Padova, 35131 Padova, Italy.

Information Technology and Cybersecurity (ITC), Missouri State University, 901 S National, Springfield, MO 65804, USA.

出版信息

J Imaging. 2021 Sep 5;7(9):177. doi: 10.3390/jimaging7090177.

Abstract

Features play a crucial role in computer vision. Initially designed to detect salient elements by means of handcrafted algorithms, features now are often learned using different layers in convolutional neural networks (CNNs). This paper develops a generic computer vision system based on features extracted from trained CNNs. Multiple learned features are combined into a single structure to work on different image classification tasks. The proposed system was derived by testing several approaches for extracting features from the of CNNs and using them as inputs to support vector machines that are then combined by sum rule. Several dimensionality reduction techniques were tested for reducing the high dimensionality of the inner layers so that they can work with SVMs. The empirically derived generic vision system based on applying a discrete cosine transform (DCT) separately to each channel is shown to significantly boost the performance of standard CNNs across a large and diverse collection of image data sets. In addition, an ensemble of different topologies taking the same DCT approach and combined with global mean thresholding pooling obtained state-of-the-art results on a benchmark image virus data set.

摘要

特征在计算机视觉中起着至关重要的作用。最初,特征是通过手工算法设计用于检测显著元素的,现在通常使用卷积神经网络(CNN)中的不同层来学习。本文基于从经过训练的CNN中提取的特征开发了一个通用的计算机视觉系统。多个学习到的特征被组合成一个单一结构,以处理不同的图像分类任务。所提出的系统是通过测试几种从CNN的[此处原文缺失相关内容]提取特征并将其用作支持向量机输入的方法而推导出来的,这些支持向量机随后通过求和规则进行组合。测试了几种降维技术以降低内层的高维性,以便它们能够与支持向量机一起工作。基于对每个通道分别应用离散余弦变换(DCT)的经验推导通用视觉系统,在大量多样的图像数据集上显著提高了标准CNN的性能。此外,采用相同DCT方法并结合全局均值阈值池化的不同拓扑结构的集成在一个基准图像病毒数据集上取得了领先的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验