Suppr超能文献

用于彩色图像分类的深度学习和基于熵的纹理特征

Deep Learning and Entropy-Based Texture Features for Color Image Classification.

作者信息

Lhermitte Emma, Hilal Mirvana, Furlong Ryan, O'Brien Vincent, Humeau-Heurtier Anne

机构信息

Univ Angers, LARIS, SFR MATHSTIC, F-49000 Angers, France.

Institute of Technology Carlow, Carlow, Ireland.

出版信息

Entropy (Basel). 2022 Oct 31;24(11):1577. doi: 10.3390/e24111577.

Abstract

In the domain of computer vision, entropy-defined as a measure of irregularity-has been proposed as an effective method for analyzing the texture of images. Several studies have shown that, with specific parameter tuning, entropy-based approaches achieve high accuracy in terms of classification results for texture images, when associated with machine learning classifiers. However, few entropy measures have been extended to studying color images. Moreover, the literature is missing comparative analyses of entropy-based and modern deep learning-based classification methods for RGB color images. In order to address this matter, we first propose a new entropy-based measure for RGB images based on a multivariate approach. This multivariate approach is a bi-dimensional extension of the methods that have been successfully applied to multivariate signals (unidimensional data). Then, we compare the classification results of this new approach with those obtained from several deep learning methods. The entropy-based method for RGB image classification that we propose leads to promising results. In future studies, the measure could be extended to study other color spaces as well.

摘要

在计算机视觉领域,熵(被定义为不规则性的一种度量)已被提出作为分析图像纹理的有效方法。多项研究表明,通过特定的参数调整,基于熵的方法在与机器学习分类器结合时,在纹理图像分类结果方面能达到高精度。然而,很少有熵度量方法被扩展用于研究彩色图像。此外,对于基于熵的和基于现代深度学习的RGB彩色图像分类方法,文献中缺少比较分析。为了解决这个问题,我们首先基于多变量方法为RGB图像提出一种新的基于熵的度量。这种多变量方法是已成功应用于多变量信号(一维数据)的方法的二维扩展。然后,我们将这种新方法的分类结果与几种深度学习方法获得的结果进行比较。我们提出的用于RGB图像分类的基于熵的方法取得了很有前景的结果。在未来的研究中,该度量也可扩展用于研究其他颜色空间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/022e/9688970/4c0ae4694077/entropy-24-01577-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验