Suppr超能文献

基于场地的团队运动中的序列运动模式挖掘(SMP):量化时空数据和提高训练特异性的框架?

Sequential movement pattern-mining (SMP) in field-based team-sport: A framework for quantifying spatiotemporal data and improve training specificity?

机构信息

Carnegie Applied Rugby Research (Carr) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK.

Leeds Rhinos Rugby League Club, Leeds, UK.

出版信息

J Sports Sci. 2022 Jan;40(2):164-174. doi: 10.1080/02640414.2021.1982484. Epub 2021 Sep 27.

Abstract

Athlete external load is typically quantified as volumes or discretised threshold values using distance, speed and time. A framework accounting for the movement sequences of athletes has previously been proposed using radio frequency data. This study developed a framework to identify sequential movement sequences using GPS-derived spatiotemporal data in team-sports and establish its stability. Thirteen rugby league players during one match were analysed to demonstrate the application of the framework. The framework (Sequential Movement Pattern-mining [SMP]) applies techniques to analyse i) geospatial data (i.e., decimal degree latitude and longitude), ii) determine players turning angles, iii) improve movement descriptor assignment, thus improving movement unit formation and iv) improve the classification and identification of players' frequent SMP. The SMP framework allows for sub-sequences of movement units to be condensed, removing repeated elements, which offers a novel technique for the quantification of similarities or dis-similarities between players and playing positions. The SMP framework provides a robust and stable method that allows, for the first time the analysis of GPS-derived data and identifies the frequent SMP of field-based team-sport athletes. The application of the SMP framework in practice could optimise the outcomes of training of field-based team-sport athletes by improving training specificity.

摘要

运动员的外部负荷通常使用距离、速度和时间来量化为体积或离散的阈值。以前已经使用射频数据提出了一个考虑运动员运动序列的框架。本研究开发了一个使用 GPS 衍生的时空数据识别团队运动中连续运动序列的框架,并确定其稳定性。为了演示该框架的应用,对 13 名橄榄球联赛运动员在一场比赛中的数据进行了分析。该框架(顺序运动模式挖掘[SMP])应用技术来分析:i)地理空间数据(即十进制度的纬度和经度),ii)确定运动员的转弯角度,iii)改进运动描述符的分配,从而改进运动单元的形成,iv)改进运动员频繁 SMP 的分类和识别。SMP 框架允许压缩运动单元的子序列,去除重复元素,这为量化运动员和比赛位置之间的相似性或差异性提供了一种新颖的技术。SMP 框架提供了一种强大而稳定的方法,首次允许分析 GPS 衍生数据并识别基于场地的团队运动运动员的频繁 SMP。SMP 框架在实践中的应用可以通过提高训练的针对性来优化基于场地的团队运动运动员的训练效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验