Suppr超能文献

从原始传感器数据中提取工程特征,以分析比赛中球员的动作。

Engineering Features from Raw Sensor Data to Analyse Player Movements during Competition.

机构信息

School of Computing, Dublin City University, Dublin 9, D09 V209 Dublin, Ireland.

Insight Centre for Data Analytics, School of Computing, Dublin City University, Dublin 9, D09 V209 Dublin, Ireland.

出版信息

Sensors (Basel). 2024 Feb 18;24(4):1308. doi: 10.3390/s24041308.

Abstract

Research in field sports often involves analysis of running performance profiles of players during competitive games with individual, per-position, and time-related descriptive statistics. Data are acquired through wearable technologies, which generally capture simple data points, which in the case of many team-based sports are times, latitudes, and longitudes. While the data capture is simple and in relatively high volumes, the raw data are unsuited to any form of analysis or machine learning functions. The main goal of this research is to develop a multistep feature engineering framework that delivers the transformation of sequential data into feature sets more suited to machine learning applications.

摘要

在户外运动研究中,通常需要分析运动员在竞技比赛中的跑动表现情况,并结合个体、位置和与时间相关的描述性统计数据进行分析。数据通过可穿戴技术获取,这些技术通常可以捕获简单的数据点,而在许多团队运动中,这些数据点是时间、纬度和经度。虽然数据捕获简单且数量相对较高,但原始数据不适合任何形式的分析或机器学习功能。本研究的主要目标是开发一个多步骤的特征工程框架,将序列数据转换为更适合机器学习应用的特征集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77aa/10893073/7582c61b4b0c/sensors-24-01308-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验