Suppr超能文献

一种与高压冷冻低温固定兼容的用于超微结构成像的分隔式神经元细胞培养平台。

A Compartmentalized Neuronal Cell-Culture Platform Compatible With Cryo-Fixation by High-Pressure Freezing for Ultrastructural Imaging.

作者信息

Tran Hung Tri, Lucas Miriam S, Ishikawa Takashi, Shahmoradian Sarah H, Padeste Celestino

机构信息

Laboratory of Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland.

Scientific Center for Optical and Electron Microscopy ScopeM, ETH Zürich, Zurich, Switzerland.

出版信息

Front Neurosci. 2021 Sep 8;15:726763. doi: 10.3389/fnins.2021.726763. eCollection 2021.

Abstract

The human brain contains a wide array of billions of neurons and interconnections, which are often simplified for analysis using compartmentalized microfluidic devices for neuronal cell culturing, to better understand neuronal development and disease. However, such devices are traditionally incompatible for high-pressure freezing and high-resolution nanoscale imaging and analysis of their sub-cellular processes by methods including electron microscopy. Here we develop a novel compartmentalized neuronal co-culture platform allowing reconstruction of neuronal networks with high variable spatial control, which is uniquely compatible for high-pressure freezing. This cryo-fixation method is well-established to enable high-fidelity preservation of the reconstructed neuronal networks and their sub-cellular processes in a near-native vitreous state without requiring chemical fixatives. To direct the outgrowth of neurites originating from two distinct groups of neurons growing in the two different compartments, polymer microstructures akin to microchannels are fabricated atop of sapphire disks. Two populations of neurons expressing either enhanced green fluorescent protein (EGFP) or mCherry were grown in either compartment, facilitating the analysis of the specific interactions between the two separate groups of cells. Neuronally differentiated PC12 cells, murine hippocampal and striatal neurons were successfully used in this context. The design of this device permits direct observation of entire neuritic processes within microchannels by optical microscopy with high spatial and temporal resolution, prior to processing for high-pressure freezing and electron microscopy. Following freeze substitution, we demonstrate that it is possible to process the neuronal networks for ultrastructural imaging by electron microscopy. Several key features of the embedded neuronal networks, including mitochondria, synaptic vesicles, axonal terminals, microtubules, with well-preserved ultrastructures were observed at high resolution using focused ion beam - scanning electron microscopy (FIB-SEM) and serial sectioning - transmission electron microscopy (TEM). These results demonstrate the compatibility of the platform with optical microscopy, high-pressure freezing and electron microscopy. The platform can be extended to neuronal models of brain disease or development in future studies, enabling the investigation of subcellular processes at the nanoscale within two distinct groups of neurons in a functional neuronal pathway, as well as pharmacological testing and drug screening.

摘要

人类大脑包含数十亿个神经元以及大量的神经连接,为了更好地理解神经元发育和疾病,在分析时,人们常使用用于神经元细胞培养的分隔式微流控装置对其进行简化。然而,传统上此类装置并不适用于高压冷冻,也无法通过包括电子显微镜在内的方法对其亚细胞过程进行高分辨率的纳米级成像和分析。在此,我们开发了一种新型的分隔式神经元共培养平台,该平台能够以高度可变的空间控制来重建神经元网络,并且独特地适用于高压冷冻。这种冷冻固定方法已被充分确立,能够在近乎天然的玻璃态下,无需化学固定剂,就对重建的神经元网络及其亚细胞过程进行高保真保存。为了引导源自两个不同隔室中生长的两组不同神经元的神经突生长,在蓝宝石盘顶部制作了类似于微通道的聚合物微结构。在两个隔室中分别培养表达增强型绿色荧光蛋白(EGFP)或mCherry的两类神经元,便于分析两组不同细胞之间的特定相互作用。在这种情况下,神经分化的PC12细胞、小鼠海马体和纹状体神经元均被成功使用。该装置的设计允许在进行高压冷冻和电子显微镜处理之前,通过具有高空间和时间分辨率的光学显微镜直接观察微通道内的整个神经突过程。冷冻置换后,我们证明可以对神经元网络进行处理以用于电子显微镜的超微结构成像。使用聚焦离子束扫描电子显微镜(FIB-SEM)和连续切片透射电子显微镜(TEM)在高分辨率下观察到了嵌入神经元网络的几个关键特征,包括线粒体、突触小泡、轴突终末和微管,其超微结构保存完好。这些结果证明了该平台与光学显微镜、高压冷冻和电子显微镜的兼容性。该平台在未来研究中可扩展至脑部疾病或发育的神经元模型,从而能够在功能神经元通路中对两组不同神经元内的纳米级亚细胞过程进行研究,以及进行药理学测试和药物筛选。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f14f/8455873/a4bda31e2a8d/fnins-15-726763-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验