Suppr超能文献

验证自然图像的视觉刺激并识别其代表性特征。

Validating Visual Stimuli of Nature Images and Identifying the Representative Characteristics.

作者信息

Menser Terri, Baek Juha, Siahaan Jacob, Kolman Jacob M, Delgado Domenica, Kash Bita

机构信息

Center for Outcomes Research, Houston Methodist, Houston, TX, United States.

Department of Population Health Sciences, Weill Cornell Medical College, New York, NY, United States.

出版信息

Front Psychol. 2021 Sep 10;12:685815. doi: 10.3389/fpsyg.2021.685815. eCollection 2021.

Abstract

This study fills a void in the literature by both validating images of nature for use in future research experiments and examining which characteristics of these visual stimuli are found to be most representative of nature. We utilized a convenience sample of university students to assess 129 different nature images on which best represented nature. Participants ( = 40) viewed one image per question ( = 129) and were asked to rate images using a 5-point Likert scale, with the anchors "best represents nature" (5) and "least represents nature" (1). Average ratings across participants were calculated for each image. Canopies, mountains, bodies of water, and unnatural elements were identified as semantic categories of interest, as well as atmospheric perspectives and close-range views. We conducted the ordinary least squares (OLS) regression and the ordered logistic regression analyses to identify semantic categories highly representative of nature, controlling for the presence/absence of other semantic categories. The results showed that canopies, bodies of water, and mountains were found to be highly representative of nature, whereas unnatural elements and close-range views were inversely related. Understanding semantic categories most representative of nature is useful in developing nature-centered interventions in behavioral performance research and other neuroimaging modalities. All images are housed in an online repository and we welcome the use of the final 10 highly representative nature images by other researchers, which will hopefully prompt and expedite future examinations of nature across multiple research formats.

摘要

本研究通过验证用于未来研究实验的自然图像,并考察这些视觉刺激的哪些特征被发现最能代表自然,填补了文献中的空白。我们利用大学生的便利样本,评估了129张不同的自然图像,以确定哪张最能代表自然。参与者(n = 40)每个问题(n = 129)观看一张图像,并被要求使用5点李克特量表对图像进行评分,锚点为“最能代表自然”(5)和“最不能代表自然”(1)。计算每张图像的参与者平均评分。树冠、山脉、水体和非自然元素被确定为感兴趣的语义类别,以及大气视角和近景视图。我们进行了普通最小二乘法(OLS)回归和有序逻辑回归分析,以确定高度代表自然的语义类别,同时控制其他语义类别的存在与否。结果表明,树冠、水体和山脉被发现高度代表自然,而非自然元素和近景视图则呈负相关。了解最能代表自然的语义类别有助于在行为表现研究和其他神经成像方式中开展以自然为中心的干预措施。所有图像都存放在一个在线存储库中,我们欢迎其他研究人员使用最后10张高度代表性的自然图像,这有望促进和加快未来跨多种研究形式对自然的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9077/8460908/cc490270237d/fpsyg-12-685815-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验