Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan.
Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung 204, Taiwan.
Cells. 2021 Sep 15;10(9):2430. doi: 10.3390/cells10092430.
Heart failure (HF) is a global pandemic public health burden affecting one in five of the general population in their lifetime. For high-risk individuals, early detection and prediction of HF progression reduces hospitalizations, reduces mortality, improves the individual's quality of life, and reduces associated medical costs. In using an artificial intelligence (AI)-assisted genome-wide association study of a single nucleotide polymorphism (SNP) database from 117 asymptomatic high-risk individuals, we identified a SNP signature composed of 13 SNPs. These were annotated and mapped into six protein-coding genes (GAD2, APP, RASGEF1C, MACROD2, DMD, and DOCK1), a pseudogene (PGAM1P5), and various non-coding RNA genes (LINC01968, LINC00687, LOC105372209, LOC101928047, LOC105372208, and LOC105371356). The SNP signature was found to have a good performance when predicting HF progression, namely with an accuracy rate of 0.857 and an area under the curve of 0.912. Intriguingly, analysis of the protein connectivity map revealed that DMD, RASGEF1C, MACROD2, DOCK1, and PGAM1P5 appear to form a protein interaction network in the heart. This suggests that, together, they may contribute to the pathogenesis of HF. Our findings demonstrate that a combination of AI-assisted identifications of SNP signatures and clinical parameters are able to effectively identify asymptomatic high-risk subjects that are predisposed to HF.
心力衰竭(HF)是一种全球性的公共卫生负担,影响五分之一的普通人群在其一生中都会受到影响。对于高危人群,早期发现和预测 HF 进展可减少住院次数,降低死亡率,提高个体的生活质量,并降低相关医疗费用。在使用人工智能(AI)辅助的 117 名无症状高危个体的单核苷酸多态性(SNP)数据库全基因组关联研究中,我们确定了一个由 13 个 SNP 组成的 SNP 特征。这些 SNP 被注释并映射到六个蛋白编码基因(GAD2、APP、RASGEF1C、MACROD2、DMD 和 DOCK1)、一个假基因(PGAM1P5)和各种非编码 RNA 基因(LINC01968、LINC00687、LOC105372209、LOC101928047、LOC105372208 和 LOC105371356)中。该 SNP 特征在预测 HF 进展时表现出良好的性能,准确率为 0.857,曲线下面积为 0.912。有趣的是,蛋白质连通性图谱分析表明,DMD、RASGEF1C、MACROD2、DOCK1 和 PGAM1P5 似乎在心脏中形成了一个蛋白质相互作用网络。这表明它们可能共同导致 HF 的发病机制。我们的研究结果表明,AI 辅助识别 SNP 特征与临床参数的结合能够有效地识别易患 HF 的无症状高危人群。