Petronek Michael S, Spitz Douglas R, Allen Bryan G
Department of Radiation Oncology, Division of Free Radical and Radiation Biology, The University of Iowa Hospitals and Clinics, Iowa City, IA 52242-1181, USA.
Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242-1181, USA.
Antioxidants (Basel). 2021 Sep 14;10(9):1458. doi: 10.3390/antiox10091458.
Cancer cells preferentially accumulate iron (Fe) relative to non-malignant cells; however, the underlying rationale remains elusive. Iron-sulfur (Fe-S) clusters are critical cofactors that aid in a wide variety of cellular functions (e.g., DNA metabolism and electron transport). In this article, we theorize that a differential need for Fe-S biogenesis in tumor versus non-malignant cells underlies the Fe-dependent cell growth demand of cancer cells to promote cell division and survival by promoting genomic stability via Fe-S containing DNA metabolic enzymes. In this review, we outline the complex Fe-S biogenesis process and its potential upregulation in cancer. We also discuss three therapeutic strategies to target Fe-S biogenesis: (i) redox manipulation, (ii) Fe chelation, and (iii) Fe mimicry.
与非恶性细胞相比,癌细胞优先积累铁(Fe);然而,其潜在的基本原理仍然难以捉摸。铁硫(Fe-S)簇是关键的辅助因子,有助于多种细胞功能(如DNA代谢和电子传递)。在本文中,我们提出理论,肿瘤细胞与非恶性细胞对Fe-S生物合成的不同需求是癌细胞铁依赖性细胞生长需求的基础,通过含Fe-S的DNA代谢酶促进基因组稳定性,从而促进细胞分裂和存活。在这篇综述中,我们概述了复杂的Fe-S生物合成过程及其在癌症中的潜在上调。我们还讨论了三种针对Fe-S生物合成的治疗策略:(i)氧化还原操纵,(ii)铁螯合,和(iii)铁模拟。