Biology Department, Georgetown College, Georgetown University, Washington, DC 20057, USA.
Georgetown University Medical Center, Department of Human Science, Georgetown University, Washington, DC 20057, USA.
Genes (Basel). 2021 Sep 16;12(9):1430. doi: 10.3390/genes12091430.
DNA double-strand breaks (DSBs) are a particularly genotoxic type of DNA damage that can result in chromosomal aberrations. Thus, proper repair of DSBs is essential to maintaining genome integrity. DSBs can be repaired by non-homologous end joining (NHEJ), where ends are processed before joining through ligation. Alternatively, DSBs can be repaired through homology-directed repair, either by homologous recombination (HR) or single-strand annealing (SSA). Both types of homology-directed repair are initiated by DNA end resection. In cultured human cells, the protein CtIP has been shown to play a role in DNA end resection through its interactions with CDK, BRCA1, DNA2, and the MRN complex. To elucidate the role of CtIP in a multicellular context, CRISPR/Cas9 genome editing was used to create a allele in . Using the DSB repair reporter assay direct repeat of (DR-), a two-fold decrease in HR in mutants was observed when compared to heterozygous controls. However, analysis of HR gene conversion tracts (GCTs) suggests DmCtIP plays a minimal role in determining GCT length. To assess the function of DmCtIP on both short (550 bp) and long (3.6 kb) end resection, modified homology-directed SSA repair assays were implemented, resulting in a two-fold decrease in SSA repair in both short and extensive end resection requirements in the mutants compared to heterozygote controls. Through these analyses, we affirmed the importance of end resection on DSB repair pathway choice in multicellular systems, described the function of DmCtIP in short and extensive DNA end resection, and determined the impact of end resection on GCT length during HR.
DNA 双链断裂 (DSB) 是一种特别具有遗传毒性的 DNA 损伤类型,可导致染色体畸变。因此,正确修复 DSB 对于维持基因组完整性至关重要。DSB 可以通过非同源末端连接 (NHEJ) 进行修复,在连接之前通过连接进行末端处理。或者,DSB 可以通过同源定向修复进行修复,通过同源重组 (HR) 或单链退火 (SSA) 进行修复。这两种类型的同源定向修复都由 DNA 末端切除引发。在培养的人类细胞中,已经表明 CtIP 蛋白通过与 CDK、BRCA1、DNA2 和 MRN 复合物相互作用,在 DNA 末端切除中发挥作用。为了阐明 CtIP 在多细胞环境中的作用,使用 CRISPR/Cas9 基因组编辑技术在 中创建了一个 等位基因。使用 DSB 修复报告基因检测直接重复的 (DR-),与杂合子对照相比, 突变体中的 HR 减少了两倍。然而,HR 基因转换区 (GCT) 的分析表明 DmCtIP 在确定 GCT 长度方面作用很小。为了评估 DmCtIP 在短 (550 bp) 和长 (3.6 kb) 末端切除中的功能,实施了改良的同源定向 SSA 修复测定,与杂合子对照相比,在 突变体中,短和广泛末端切除要求下的 SSA 修复减少了两倍。通过这些分析,我们证实了末端切除在多细胞系统中对 DSB 修复途径选择的重要性,描述了 DmCtIP 在短和广泛 DNA 末端切除中的功能,并确定了末端切除对 HR 中 GCT 长度的影响。