Suppr超能文献

基于加速度计传感器的项圈用于监测放牧奶牛采食和反刍行为的验证

Validation of an Accelerometer Sensor-Based Collar for Monitoring Grazing and Rumination Behaviours in Grazing Dairy Cows.

作者信息

Iqbal Muhammad Wasim, Draganova Ina, Morel Patrick C H, Morris Stephen T

机构信息

School of Agriculture and Environment, College of Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand.

出版信息

Animals (Basel). 2021 Sep 17;11(9):2724. doi: 10.3390/ani11092724.

Abstract

This study evaluated the accuracy of a sensor-based device (AfiCollar) to automatically monitor and record grazing and rumination behaviours of grazing dairy cows on a real-time basis. Multiparous spring-calved dairy cows ( = 48) wearing the AfiCollar were selected for the visual observation of their grazing and rumination behaviours. The total observation period was 36 days, divided into four recording periods performed at different times of the year, using 12 cows in each period. Each recording period consisted of nine daily observation sessions (three days a week for three consecutive weeks). A continuous behaviour monitoring protocol was followed to visually observe four cows at a time for each daily observation session, from 9:00 a.m. to 5:00 p.m. Overall, 144 observations were collected and the data were presented as behaviour activity per daily observation session. The behaviours visually observed were also recorded through an automated AfiCollar device on a real-time basis over the observation period. Automatic recordings and visual observations were compared with each other using Pearson's correlation coefficient (r), Concordance correlation coefficient (CCC), and linear regression. Compared to visual observation (VO), AfiCollar (AC) showed slightly higher (10%) grazing time and lower (4%) rumination time. AC results and VO results had strong associations with each other for grazing time (r = 0.91, CCC = 0.71) and rumination time (r = 0.89, CCC = 0.80). Regression analysis showed a significant linear relationship between AC and VO for grazing time (R = 0.83, < 0.05) and rumination time (R = 0.78, < 0.05). The relative prediction error (RPE) values for grazing time and rumination time were 0.17 and 0.40, respectively. Overall, the results indicated that AfiCollar is a reliable device to accurately monitor and record grazing and rumination behaviours of grazing dairy cows, although, some minor improvements can be made in algorithm calibrations to further improve its accuracy.

摘要

本研究评估了一种基于传感器的设备(AfiCollar)实时自动监测和记录放牧奶牛采食及反刍行为的准确性。选择佩戴AfiCollar的经产春季产犊奶牛(n = 48)进行采食和反刍行为的视觉观察。总观察期为36天,分为一年中不同时间进行的四个记录期,每个记录期使用12头奶牛。每个记录期包括九个每日观察时段(连续三周每周三天)。遵循连续行为监测方案,在每个每日观察时段,从上午9:00至下午5:00,每次对四头奶牛进行视觉观察。总体而言,共收集了144次观察数据,并将数据表示为每个每日观察时段的行为活动。在观察期内,通过自动化的AfiCollar设备也实时记录了视觉观察到的行为。使用Pearson相关系数(r)、一致性相关系数(CCC)和线性回归对自动记录和视觉观察结果进行相互比较。与视觉观察(VO)相比,AfiCollar(AC)显示采食时间略高(10%),反刍时间略低(4%)。AC结果和VO结果在采食时间(r = 0.91,CCC = 0.71)和反刍时间(r = 0.89,CCC = 0.80)方面彼此具有很强的相关性。回归分析表明,AC和VO在采食时间(R = 0.83,P < 0.05)和反刍时间(R = 0.78,P < 0.05)方面存在显著的线性关系。采食时间和反刍时间的相对预测误差(RPE)值分别为0.17和0.40。总体而言,结果表明AfiCollar是一种可靠的设备,能够准确监测和记录放牧奶牛的采食及反刍行为,不过,在算法校准方面可以进行一些小的改进,以进一步提高其准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb48/8471104/52f8d86cad99/animals-11-02724-g001.jpg

相似文献

2
Evaluation and application potential of an accelerometer-based collar device for measuring grazing behavior of dairy cows.
Animal. 2019 Sep;13(9):2070-2079. doi: 10.1017/S1751731118003658. Epub 2019 Feb 8.
9
Evaluation of the RumiWatchSystem for measuring grazing behaviour of cows.
J Neurosci Methods. 2018 Apr 15;300:138-146. doi: 10.1016/j.jneumeth.2017.08.022. Epub 2017 Aug 24.
10

引用本文的文献

1
FSCA-YOLO: An Enhanced YOLO-Based Model for Multi-Target Dairy Cow Behavior Recognition.
Animals (Basel). 2025 Sep 8;15(17):2631. doi: 10.3390/ani15172631.
2
Impacts of early postpartum behavioral patterns on the fertility and milk production of tropical dairy cows.
Vet World. 2025 May;18(5):1109-1126. doi: 10.14202/vetworld.2025.1109-1126. Epub 2025 May 13.
3
ActBeCalf: Accelerometer-based multivariate time-series dataset for calf behavior classification.
Data Brief. 2025 Mar 17;60:111462. doi: 10.1016/j.dib.2025.111462. eCollection 2025 Jun.
4
Smart sensors in Thai dairy reproduction: A case study.
Vet World. 2024 Jun;17(6):1251-1258. doi: 10.14202/vetworld.2024.1251-1258. Epub 2024 Jun 8.
5
Behavioral Adaptations in Tropical Dairy Cows: Insights into Calving Day Predictions.
Animals (Basel). 2024 Jun 20;14(12):1834. doi: 10.3390/ani14121834.
7
Precision technologies to improve dairy grazing systems.
JDS Commun. 2023 Apr 20;4(4):318-323. doi: 10.3168/jdsc.2022-0308. eCollection 2023 Jul.

本文引用的文献

1
Validation of an ear tag-based accelerometer system for detecting grazing behavior of dairy cows.
J Dairy Sci. 2020 Apr;103(4):3529-3544. doi: 10.3168/jds.2019-17269. Epub 2020 Feb 20.
2
Technical note: validation of a system for monitoring individual behavior in beef heifers.
J Anim Sci. 2019 Dec 17;97(12):4732-4736. doi: 10.1093/jas/skz326.
3
Evaluation and application potential of an accelerometer-based collar device for measuring grazing behavior of dairy cows.
Animal. 2019 Sep;13(9):2070-2079. doi: 10.1017/S1751731118003658. Epub 2019 Feb 8.
4
First-night effect on sleep time in dairy cows.
PLoS One. 2018 Apr 13;13(4):e0195593. doi: 10.1371/journal.pone.0195593. eCollection 2018.
6
Evaluation of the RumiWatchSystem for measuring grazing behaviour of cows.
J Neurosci Methods. 2018 Apr 15;300:138-146. doi: 10.1016/j.jneumeth.2017.08.022. Epub 2017 Aug 24.
7
Recent advancement in biosensors technology for animal and livestock health management.
Biosens Bioelectron. 2017 Dec 15;98:398-407. doi: 10.1016/j.bios.2017.07.015. Epub 2017 Jul 8.
8
A validation of technologies monitoring dairy cow feeding, ruminating, and lying behaviors.
J Dairy Sci. 2016 Sep;99(9):7458-7466. doi: 10.3168/jds.2015-10843. Epub 2016 Aug 8.
9
The effects of providing portable shade at pasture on dairy cow behavior and physiology.
J Dairy Sci. 2015 Sep;98(9):6085-93. doi: 10.3168/jds.2014-8932. Epub 2015 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验