Suppr超能文献

技术说明:一种耳标加速度传感器用于确定放牧奶牛反刍、采食和活动行为的验证。

Technical note: Validation of an ear-tag accelerometer sensor to determine rumination, eating, and activity behaviors of grazing dairy cattle.

机构信息

Department of Animal Science, University of Minnesota, St. Paul 55108.

Department of Animal Science, University of Minnesota, St. Paul 55108.

出版信息

J Dairy Sci. 2018 Mar;101(3):2492-2495. doi: 10.3168/jds.2016-12534. Epub 2017 Dec 28.

Abstract

The objective of this study was to validate an ear-tag accelerometer sensor (CowManager SensOor, Agis Automatisering BV, Harmelen, the Netherlands) using direct visual observations in a grazing dairy herd. Lactating crossbred cows (n = 24) were used for this experiment at the University of Minnesota West Central Research and Outreach Center grazing dairy (Morris, MN) during the summer of 2016. A single trained observer recorded behavior every minute for 6 h for each cow (24 cows × 6 h = 144 h of observation total). Direct visual observation was compared with sensor data during August and September 2016. The sensor detected and identified ear and head movements, and through algorithms the sensor classified each minute as one of the following behaviors: rumination, eating, not active, active, and high active. A 2-sided t-test was conducted with PROC TTEST of SAS (SAS Institute Inc., Cary, NC) to compare the percentage of time each cow's behavior was recorded by direct visual observation and sensor data. For total recorded time, the percentage of time of direct visual observation compared with sensor data was 17.9 and 19.1% for rumination, 52.8 and 51.9% for eating, 17.4 and 11.9% for not active, and 7.9 and 21.1% for active. Pearson correlations (PROC CORR of SAS) were used to evaluate associations between direct visual observations and sensor data. Furthermore, concordance correlation coefficient (CCC), bias correction factors, location shift, and scale shift (epiR package of R version 3.3.1; R Foundation for Statistical Computing, Vienna, Austria) were calculated to provide a measure of accuracy and precision. Correlations between visual observations for all 4 behaviors were highly to weakly correlated (rumination: r = 0.72, CCC = 0.71; eating: r = 0.88, CCC = 0.88; not active: r = 0.65, CCC = 0.52; and active: r = 0.20, CCC = 0.19) compared with sensor data. The results suggest that the sensor accurately monitors rumination and eating behavior of grazing dairy cattle. However, active behaviors may be more difficult for the sensor to record than others.

摘要

本研究的目的是利用直接视觉观察来验证耳标加速度计传感器(CowManager SensOor,Agis Automatisering BV,荷兰哈梅林)在放牧奶牛群中的有效性。在 2016 年夏季,明尼苏达大学中西部研究与推广中心放牧奶牛场(明尼苏达州莫里斯)使用了 24 头泌乳杂交奶牛进行了这项实验。一名受过训练的观察者记录了每头奶牛 6 小时的行为,每头奶牛 6 小时(24 头奶牛×6 小时=144 小时的观察总时间)。直接视觉观察与 2016 年 8 月和 9 月的传感器数据进行了比较。传感器检测并识别耳朵和头部运动,并通过算法将每分钟分类为以下行为之一:反刍、进食、不活跃、活跃和高度活跃。使用 SAS 的 PROC TTEST 进行双侧 t 检验(SAS 研究所,卡里,NC),以比较直接视觉观察和传感器数据记录每头奶牛行为的时间百分比。对于总记录时间,直接视觉观察与传感器数据的时间百分比为反刍 17.9%和 19.1%,进食 52.8%和 51.9%,不活跃 17.4%和 11.9%,活跃 7.9%和 21.1%。使用 Pearson 相关系数(SAS 的 PROC CORR)评估了直接视觉观察与传感器数据之间的关联。此外,还计算了一致性相关系数(CCC)、偏差校正因子、位置偏移和比例偏移(R 版本 3.3.1 的 epiR 包;奥地利维也纳的 R 基金会统计计算),以提供准确性和精密度的度量。所有 4 种行为的直接视觉观察之间的相关性为高度到低度相关(反刍:r = 0.72,CCC = 0.71;进食:r = 0.88,CCC = 0.88;不活跃:r = 0.65,CCC = 0.52;活跃:r = 0.20,CCC = 0.19)与传感器数据相比。结果表明,该传感器可以准确监测放牧奶牛的反刍和进食行为。然而,与其他行为相比,传感器可能更难记录活跃行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验