Suppr超能文献

利用深度学习和高光谱成像技术进行肝脏活力自动评分

Automatic Liver Viability Scoring with Deep Learning and Hyperspectral Imaging.

作者信息

Felli Eric, Al-Taher Mahdi, Collins Toby, Nkusi Richard, Felli Emanuele, Baiocchini Andrea, Lindner Veronique, Vincent Cindy, Barberio Manuel, Geny Bernard, Ettorre Giuseppe Maria, Hostettler Alexandre, Mutter Didier, Gioux Sylvain, Schuster Catherine, Marescaux Jacques, Gracia-Sancho Jordi, Diana Michele

机构信息

Hepatology, Department of Biomedical Research, Inselspital, University of Bern, 3008 Bern, Switzerland.

IHU-Strasbourg, Institute of Image-Guided Surgery, 67000 Strasbourg, France.

出版信息

Diagnostics (Basel). 2021 Aug 24;11(9):1527. doi: 10.3390/diagnostics11091527.

Abstract

Hyperspectral imaging (HSI) is a non-invasive imaging modality already applied to evaluate hepatic oxygenation and to discriminate different models of hepatic ischemia. Nevertheless, the ability of HSI to detect and predict the reperfusion damage intraoperatively was not yet assessed. Hypoxia caused by hepatic artery occlusion (HAO) in the liver brings about dreadful vascular complications known as ischemia-reperfusion injury (IRI). Here, we show the evaluation of liver viability in an HAO model with an artificial intelligence-based analysis of HSI. We have combined the potential of HSI to extract quantitative optical tissue properties with a deep learning-based model using convolutional neural networks. The artificial intelligence (AI) score of liver viability showed a significant correlation with capillary lactate from the liver surface (r = -0.78, = 0.0320) and Suzuki's score (r = -0.96, = 0.0012). CD31 immunostaining confirmed the microvascular damage accordingly with the AI score. Our results ultimately show the potential of an HSI-AI-based analysis to predict liver viability, thereby prompting for intraoperative tool development to explore its application in a clinical setting.

摘要

高光谱成像(HSI)是一种非侵入性成像方式,已用于评估肝脏氧合情况并区分不同的肝脏缺血模型。然而,HSI在术中检测和预测再灌注损伤的能力尚未得到评估。肝脏中肝动脉闭塞(HAO)引起的缺氧会导致可怕的血管并发症,即缺血再灌注损伤(IRI)。在此,我们展示了在HAO模型中通过基于人工智能的HSI分析对肝脏活力进行评估。我们将HSI提取定量光学组织特性的潜力与使用卷积神经网络的深度学习模型相结合。肝脏活力的人工智能(AI)评分与肝脏表面的毛细血管乳酸水平(r = -0.78,P = 0.0320)以及铃木评分(r = -0.96,P = 0.0012)显示出显著相关性。CD31免疫染色相应地证实了与AI评分相关的微血管损伤。我们的结果最终表明基于HSI-AI的分析在预测肝脏活力方面的潜力,从而促使开发术中工具以探索其在临床环境中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9949/8472457/27bcbb340ef0/diagnostics-11-01527-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验