Suppr超能文献

使用细胞群体数据(VCS参数)作为血液系统疾病快速筛查工具的新型算法

Neoteric Algorithm Using Cell Population Data (VCS Parameters) as a Rapid Screening Tool for Haematological Disorders.

作者信息

Ambayya Angeli, Sathar Jameela, Hassan Rosline

机构信息

Clinical Haematology Referral Laboratory, Haematology Department, Hospital Ampang, Selangor 68000, Malaysia.

Department Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan 15200, Malaysia.

出版信息

Diagnostics (Basel). 2021 Sep 9;11(9):1652. doi: 10.3390/diagnostics11091652.

Abstract

Hitherto, there has been no comprehensive study on the usefulness of cell population data (CPD) parameters as a screening tool in the discrimination of non-neoplastic and neoplastic haematological disorders. Hence, we aimed to develop an algorithm derived from CPD parameters to enable robust screening of neoplastic from non-neoplastic samples and subsequently to aid in differentiating various neoplastic haematological disorders. In this study, the CPD parameters from 245 subtypes of leukaemia and lymphoma were compared against 1103 non-neoplastic cases, and those CPD parameters that were vigorous discriminants were selected for algorithm development. We devised a novel algorithm: [(SD-V-NEMN-UMALS-LYSD-AL2-MO)/MN-C-NE] to distinguish neoplastic from non-neoplastic cases. Following that, the single parameter MN-AL2-NE was used as a discriminant to rule out reactive cases from neoplastic cases. We then assessed CPD parameters that were useful in delineating leukaemia subtypes as follows: AML (SD-MALS-NE and SD-UMALS-NE), APL (MN-V-NE and SD-V-MO), ALL (MN-MALS-NE and MN-LMALS-NE) and CLL (SD-C-MO). Prospective studies were carried out to validate the algorithm and single parameter, MN-AL2-NE. We propose these CPD parameter-based discriminant strategies to be adopted as an initial screening and flagging system in the preliminary evaluation of leukocyte morphology.

摘要

迄今为止,尚未有关于细胞群体数据(CPD)参数作为鉴别非肿瘤性和肿瘤性血液系统疾病筛查工具的实用性的全面研究。因此,我们旨在开发一种源自CPD参数的算法,以便能够对肿瘤性样本和非肿瘤性样本进行可靠的筛查,并随后有助于区分各种肿瘤性血液系统疾病。在本研究中,将245种白血病和淋巴瘤亚型的CPD参数与1103例非肿瘤性病例进行了比较,并选择那些具有强烈鉴别能力的CPD参数用于算法开发。我们设计了一种新颖的算法:[(SD-V-NEMN-UMALS-LYSD-AL2-MO)/MN-C-NE]来区分肿瘤性病例和非肿瘤性病例。随后,将单参数MN-AL2-NE用作鉴别指标,以从肿瘤性病例中排除反应性病例。然后,我们评估了有助于区分白血病亚型的CPD参数,如下所示:急性髓系白血病(AML,SD-MALS-NE和SD-UMALS-NE)、急性早幼粒细胞白血病(APL,MN-V-NE和SD-V-MO)、急性淋巴细胞白血病(ALL,MN-MALS-NE和MN-LMALS-NE)和慢性淋巴细胞白血病(CLL,SD-C-MO)。进行了前瞻性研究以验证该算法和单参数MN-AL2-NE。我们建议将这些基于CPD参数的鉴别策略用作白细胞形态学初步评估中的初始筛查和标记系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f89/8469496/e508726643a8/diagnostics-11-01652-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验