Suppr超能文献

利用高光谱成像和化学计量学检测不同阶段‘罗卓辉煌’柿子果实中的隐形损伤

Detection of Invisible Damages in 'Rojo Brillante' Persimmon Fruit at Different Stages Using Hyperspectral Imaging and Chemometrics.

作者信息

Munera Sandra, Rodríguez-Ortega Alejandro, Aleixos Nuria, Cubero Sergio, Gómez-Sanchis Juan, Blasco José

机构信息

Centro de Agroingeniería, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315, Km 10.7, 46113 Moncada, Spain.

Departamento de Ingeniería Gráfica, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain.

出版信息

Foods. 2021 Sep 13;10(9):2170. doi: 10.3390/foods10092170.

Abstract

The main cause of flesh browning in 'Rojo Brillante' persimmon fruit is mechanical damage caused during harvesting and packing. Innovation and research on nondestructive techniques to detect this phenomenon in the packing lines are necessary because this type of alteration is often only seen when the final consumer peels the fruit. In this work, we have studied the application of hyperspectral imaging in the range of 450-1040 nm to detect mechanical damage without any external symptoms. The fruit was damaged in a controlled manner. Later, images were acquired before and at 0, 1, 2 and 3 days after damage induction. First, the spectral data captured from the images were analysed through an algorithm based on principal component analysis (PCA). The aim was to automatically separate intact and damaged fruit, and to detect the damage in the PC images when present. With this algorithm, 90.0% of intact fruit and 90.8% of damaged fruit were correctly detected. A model based on partial least squares-discriminant analysis (PLS-DA), was later calibrated using the mean spectrum of the pixels detected as damaged, to determine the moment when the fruit was damaged. The model differentiated fruit corresponding correctly to 0, 1, 2 and 3 days after damage induction, achieving a total accuracy of 99.4%.

摘要

“罗卓辉煌”柿果果肉褐变的主要原因是采收和包装过程中造成的机械损伤。有必要对包装线上检测这种现象的无损技术进行创新和研究,因为这种类型的变质通常只有在最终消费者剥去果实外皮时才会显现出来。在这项工作中,我们研究了在450 - 1040纳米范围内应用高光谱成像来检测没有任何外部症状的机械损伤。果实以可控方式受损。随后,在损伤诱导前以及损伤诱导后0、1、2和3天采集图像。首先,通过基于主成分分析(PCA)的算法分析从图像中捕获的光谱数据。目的是自动分离完好果实和受损果实,并在存在损伤时在主成分图像中检测到损伤。使用该算法,90.0%的完好果实和90.8%的受损果实被正确检测。后来,使用检测为受损像素的平均光谱校准基于偏最小二乘判别分析(PLS - DA)的模型,以确定果实受损的时刻。该模型正确区分了损伤诱导后0、1、2和3天对应的果实,总准确率达到99.4%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cb2/8468948/3d93282b0960/foods-10-02170-g001.jpg

相似文献

7
8
Hormonal control of parthenocarpic fruit set in 'Rojo Brillante' persimmon (Diospyros kaki Thunb.).
J Plant Physiol. 2018 Dec;231:96-104. doi: 10.1016/j.jplph.2018.09.004. Epub 2018 Sep 15.

本文引用的文献

1
Classification of maize kernels using NIR hyperspectral imaging.
Food Chem. 2016 Oct 15;209:131-8. doi: 10.1016/j.foodchem.2016.04.044. Epub 2016 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验