Suppr超能文献

利用高光谱成像和数据增强技术识别不同品种及含水量下的霉变花生

Identification of Moldy Peanuts under Different Varieties and Moisture Content Using Hyperspectral Imaging and Data Augmentation Technologies.

作者信息

Liu Ziwei, Jiang Jinbao, Li Mengquan, Yuan Deshuai, Nie Cheng, Sun Yilin, Zheng Peng

机构信息

College of Geosciences and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.

出版信息

Foods. 2022 Apr 16;11(8):1156. doi: 10.3390/foods11081156.

Abstract

Aflatoxins in moldy peanuts are seriously toxic to humans. These kernels need to be screened in the production process. Hyperspectral imaging techniques can be used to identify moldy peanuts. However, the changes in spectral information and texture information caused by the difference in moisture content in peanuts will affect the identification accuracy. To reduce and eliminate the influence of this factor, a data augmentation method based on interpolation was proposed to improve the generalization ability and robustness of the model. Firstly, the near-infrared hyperspectral images of 5 varieties, 4 classes, and 3 moisture content gradients with 39,119 kernels were collected. Then, the data augmentation method called the difference of spectral mean (DSM) was constructed. K-nearest neighbors (KNN), support vector machines (SVM), and MobileViT-xs models were used to verify the effectiveness of the data augmentation method on data with two gradients and three gradients. The experimental results show that the data augmentation can effectively reduce the influence of the difference in moisture content on the model identification accuracy. The DSM method has the highest accuracy improvement in 5 varieties of peanut datasets. In particular, the accuracy of KNN, SVM, and MobileViT-xs using the data of two gradients was improved by 3.55%, 4.42%, and 5.9%, respectively. Furthermore, this study provides a new method for improving the identification accuracy of moldy peanuts and also provides a reference basis for the screening of related foods such as corn, orange, and mango.

摘要

发霉花生中的黄曲霉毒素对人体有严重毒性。这些花生仁在生产过程中需要进行筛选。高光谱成像技术可用于识别发霉花生。然而,花生中水分含量差异所导致的光谱信息和纹理信息变化会影响识别准确性。为减少和消除这一因素的影响,提出了一种基于插值的数据增强方法,以提高模型的泛化能力和鲁棒性。首先,收集了5个品种、4个类别、3个水分含量梯度的39119颗花生仁的近红外高光谱图像。然后,构建了名为光谱均值差(DSM)的数据增强方法。使用K近邻(KNN)、支持向量机(SVM)和MobileViT-xs模型来验证数据增强方法对两个梯度和三个梯度数据的有效性。实验结果表明,数据增强可以有效降低水分含量差异对模型识别准确性的影响。DSM方法在5个品种花生数据集上的准确率提升最高。特别是,使用两个梯度数据时,KNN、SVM和MobileViT-xs的准确率分别提高了3.55%、4.42%和5.9%。此外,本研究为提高发霉花生的识别准确性提供了一种新方法,也为玉米、橙子和芒果等相关食品的筛选提供了参考依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f803/9030905/2b20f069546f/foods-11-01156-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验