Cursaru Laura-Madalina, Valsan Sorina Nicoleta, Puscasu Maria-Eliza, Tudor Ioan Albert, Zarnescu-Ivan Nicoleta, Vasile Bogdan Stefan, Piticescu Roxana Mioara
National R&D Institute for Non-Ferrous and Rare Metals, INCDMNR-IMNR, 077145 Pantelimon, Romania.
National Research Center for Micro and Nanomaterials, University POLITEHNICA of Bucharest, 011061 Bucharest, Romania.
Materials (Basel). 2021 Sep 15;14(18):5330. doi: 10.3390/ma14185330.
Recently, carbon nanotubes (CNTs) have been used extensively to develop new materials and devices due to their specific morphology and properties. The reinforcement of different metal oxides such as zinc oxide (ZnO) with CNT develops advanced multifunctional materials with improved properties. Our aim is to obtain ZnO-CNT nanocomposites by in situ hydrothermal method in high-pressure conditions. Various compositions were tested. The structure and morphology of ZnO-CNT nanocomposites were analyzed by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry-thermogravimetry (DSC-TG), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). These analyses showed the formation of complex ZnO-CNT structures. FT-IR spectra suggest possible interactions between CNT and ZnO. DSC-TG analysis also reveals the formation of some physical bonds between ZnO and CNT, through the appearance of endothermic peaks which could be assigned to the decomposition of functional groups of the CNT chain and breaking of the ZnO-CNT bonds. XRD characterization demonstrated the existence of ZnO nanocrystallites with size around 60 nm. The best ZnO:CNT composition was further selected for preliminary investigations of the potential of these nanocomposite powders to be processed as pastes for extrusion-based 3D printing.
近年来,碳纳米管(CNTs)因其独特的形态和性能而被广泛用于开发新型材料和器件。用碳纳米管增强不同的金属氧化物,如氧化锌(ZnO),可开发出性能更优的先进多功能材料。我们的目标是在高压条件下通过原位水热法获得ZnO-CNT纳米复合材料。对各种成分进行了测试。通过傅里叶变换红外光谱(FTIR)、差示扫描量热-热重分析(DSC-TG)、X射线衍射(XRD)、扫描电子显微镜(SEM)、能量色散X射线光谱(EDX)和透射电子显微镜(TEM)对ZnO-CNT纳米复合材料的结构和形态进行了分析。这些分析表明形成了复杂的ZnO-CNT结构。傅里叶变换红外光谱表明碳纳米管和氧化锌之间可能存在相互作用。差示扫描量热-热重分析还通过出现可归因于碳纳米管链官能团分解和ZnO-CNT键断裂的吸热峰,揭示了氧化锌和碳纳米管之间形成了一些物理键。X射线衍射表征证明存在尺寸约为60nm的ZnO纳米微晶。进一步选择了最佳的ZnO:CNT组成,对这些纳米复合粉末作为基于挤出的3D打印浆料进行加工的潜力进行初步研究。