Suppr超能文献

应激的表观遗传反应:通过全基因组测序追踪甲基化水平并寻找甲基化模式

Epigenetic Response of to Stress: Tracking Methylation Level and Search for Methylation Patterns via Whole-Genome Sequencing.

作者信息

Kubiak-Szymendera Monika, Pryszcz Leszek P, Białas Wojciech, Celińska Ewelina

机构信息

Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 460-637 Poznań, Poland.

Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain.

出版信息

Microorganisms. 2021 Aug 24;9(9):1798. doi: 10.3390/microorganisms9091798.

Abstract

DNA methylation is a common, but not universal, epigenetic modification that plays an important role in multiple cellular processes. While definitely settled for numerous plant, mammalian, and bacterial species, the genome methylation in different fungal species, including widely studied and industrially-relevant yeast species, , is still a matter of debate. In this paper, we report a differential DNA methylation level in the genome of subjected to sequential subculturing and to heat stress conditions. To this end, we adopted repeated batch bioreactor cultivations of subjected to thermal stress in specific time intervals. To analyze the variation in DNA methylation between stressed and control cultures, we (a) quantified the global DNA methylation status using an immuno-assay, and (b) studied DNA methylation patterns through whole-genome sequencing. Primarily, we demonstrated that 5 mC modification can be detected using a commercial immuno-assay, and that the modifications are present in 's genome at ~0.5% 5 mC frequency. On the other hand, we did not observe any changes in the epigenetic response of to heat shock (HS) treatment. Interestingly, we identified a general phenomenon of decreased 5 mC level in 's genome in the stationary phase of growth, when compared to a late-exponential epigenome. While this study provides an insight into the subculturing stress response and adaptation to the stress at epigenetic level by , it also leaves an open question of inability to detect any genomic DNA methylation level (either in CpG context or context-less) through whole-genome sequencing. The results of ONT sequencing, suggesting that 5 mC modification is either rare or non-existent in genome, are contradicted with the results of the immunoassay.

摘要

DNA甲基化是一种常见但并非普遍存在的表观遗传修饰,在多种细胞过程中发挥着重要作用。虽然在众多植物、哺乳动物和细菌物种中已明确存在,但包括广泛研究且与工业相关的酵母物种在内的不同真菌物种的基因组甲基化仍是一个有争议的问题。在本文中,我们报告了在连续传代培养和热应激条件下,[具体物种]基因组中DNA甲基化水平的差异。为此,我们采用了在特定时间间隔对[具体物种]进行热应激的重复分批生物反应器培养。为了分析应激培养物和对照培养物之间DNA甲基化的变化,我们:(a)使用免疫测定法量化整体DNA甲基化状态;(b)通过全基因组测序研究DNA甲基化模式。首先,我们证明了可以使用商业免疫测定法检测5 - 甲基胞嘧啶(5 mC)修饰,并且这些修饰以约0.5%的5 mC频率存在于[具体物种]的基因组中。另一方面,我们未观察到[具体物种]对热休克(HS)处理的表观遗传反应有任何变化。有趣的是,我们发现与指数后期表观基因组相比,在生长稳定期[具体物种]基因组中的5 mC水平普遍下降。虽然这项研究深入了解了[具体物种]在传代培养应激反应和表观遗传水平上对压力的适应情况,但它也留下了一个悬而未决的问题,即通过全基因组测序无法检测到任何基因组DNA甲基化水平(无论是在CpG背景下还是无背景情况下)。纳米孔测序(ONT)的结果表明5 mC修饰在[具体物种]基因组中要么罕见要么不存在,这与免疫测定的结果相矛盾。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验