Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Nucleic Acids Res. 2020 May 7;48(8):4081-4099. doi: 10.1093/nar/gkaa161.
Cytosine methylation is a ubiquitous modification in mammalian DNA generated and maintained by several DNA methyltransferases (DNMTs) with partially overlapping functions and genomic targets. To systematically dissect the factors specifying each DNMT's activity, we engineered combinatorial knock-in of human DNMT genes in Komagataella phaffii, a yeast species lacking endogenous DNA methylation. Time-course expression measurements captured dynamic network-level adaptation of cells to DNMT3B1-induced DNA methylation stress and showed that coordinately modulating the availability of S-adenosyl methionine (SAM), the essential metabolite for DNMT-catalyzed methylation, is an evolutionarily conserved epigenetic stress response, also implicated in several human diseases. Convolutional neural networks trained on genome-wide CpG-methylation data learned distinct sequence preferences of DNMT3 family members. A simulated annealing interpretation method resolved these preferences into individual flanking nucleotides and periodic poly(A) tracts that rotationally position highly methylated cytosines relative to phased nucleosomes. Furthermore, the nucleosome repeat length defined the spatial unit of methylation spreading. Gene methylation patterns were similar to those in mammals, and hypo- and hypermethylation were predictive of increased and decreased transcription relative to control, respectively, in the absence of mammalian readers of DNA methylation. Introducing controlled epigenetic perturbations in yeast thus enabled characterization of fundamental genomic features directing specific DNMT3 proteins.
胞嘧啶甲基化是哺乳动物 DNA 中普遍存在的一种修饰,由几种 DNA 甲基转移酶(DNMTs)产生和维持,这些酶具有部分重叠的功能和基因组靶标。为了系统地剖析指定每个 DNMT 活性的因素,我们在 Komagataella phaffii 中构建了人 DNMT 基因的组合敲入,Komagataella phaffii 是一种缺乏内源性 DNA 甲基化的酵母物种。时程表达测量捕捉到细胞对 DNMT3B1 诱导的 DNA 甲基化应激的动态网络级适应,表明协调调节 S-腺苷甲硫氨酸(SAM)的可用性,SAM 是 DNMT 催化甲基化所必需的代谢物,是一种进化保守的表观遗传应激反应,也与几种人类疾病有关。在全基因组 CpG 甲基化数据上训练的卷积神经网络学会了 DNMT3 家族成员的不同序列偏好。一种模拟退火解释方法将这些偏好解析为单个侧翼核苷酸和周期性聚 A 序列,这些序列相对于定相核小体旋转定位高度甲基化的胞嘧啶。此外,核小体重复长度定义了甲基化扩展的空间单位。基因甲基化模式与哺乳动物相似,在缺乏哺乳动物 DNA 甲基化读取器的情况下,与对照相比,低甲基化和高甲基化分别预测转录增加和减少。因此,在酵母中引入受控的表观遗传干扰能够表征指导特定 DNMT3 蛋白的基本基因组特征。