Suppr超能文献

一种用于病理性步态自动分类的时空深度学习方法。

A Spatiotemporal Deep Learning Approach for Automatic Pathological Gait Classification.

机构信息

Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.

Department of CSIS and APPCAIR, BITS Pilani, K K Birla, Goa Campus, Goa 403726, India.

出版信息

Sensors (Basel). 2021 Sep 16;21(18):6202. doi: 10.3390/s21186202.

Abstract

Human motion analysis provides useful information for the diagnosis and recovery assessment of people suffering from pathologies, such as those affecting the way of walking, i.e., gait. With recent developments in deep learning, state-of-the-art performance can now be achieved using a single 2D-RGB-camera-based gait analysis system, offering an objective assessment of gait-related pathologies. Such systems provide a valuable complement/alternative to the current standard practice of subjective assessment. Most 2D-RGB-camera-based gait analysis approaches rely on compact gait representations, such as the gait energy image, which summarize the characteristics of a walking sequence into one single image. However, such compact representations do not fully capture the temporal information and dependencies between successive gait movements. This limitation is addressed by proposing a spatiotemporal deep learning approach that uses a selection of key frames to represent a gait cycle. Convolutional and recurrent deep neural networks were combined, processing each gait cycle as a collection of silhouette key frames, allowing the system to learn temporal patterns among the spatial features extracted at individual time instants. Trained with gait sequences from the GAIT-IT dataset, the proposed system is able to improve gait pathology classification accuracy, outperforming state-of-the-art solutions and achieving improved generalization on cross-dataset tests.

摘要

人体运动分析为诊断和评估患有病理的人的恢复情况提供了有用的信息,例如那些影响行走方式的病理,即步态。随着深度学习的最新发展,现在可以使用基于单个 2D-RGB 摄像机的步态分析系统实现最先进的性能,为步态相关病理提供客观评估。这些系统为当前主观评估的标准做法提供了有价值的补充/替代方案。大多数基于 2D-RGB 摄像机的步态分析方法依赖于紧凑的步态表示,例如步态能量图像,它将行走序列的特征总结为一个单一的图像。然而,这种紧凑的表示不能完全捕捉到连续步态运动之间的时间信息和依赖性。通过提出一种使用选择的关键帧来表示步态周期的时空深度学习方法来解决这个局限性。卷积和递归深度神经网络相结合,将每个步态周期作为一系列轮廓关键帧进行处理,允许系统学习在各个时间点提取的空间特征之间的时间模式。使用来自 GAIT-IT 数据集的步态序列进行训练,所提出的系统能够提高步态病理分类准确性,优于最先进的解决方案,并在跨数据集测试中实现了更好的泛化能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9d3/8473368/be0987a4027d/sensors-21-06202-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验